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I Preface
I

The purpose of this study was to determine if there existed an

I analytical solution for the three-body atmospheric entry equations. I

decided to continue the excellent work by Drs. Vinh, Busemann, and Culp

and use the Method of Matched Asymptotic Expansions to determine zero

and first order solutions to the above equations. By using the computerized

symbolic manipulator Mathematical", the algebraic manipulations are

reduced to a manageable level, so a more thorough analysis can be

performed. By examining trends in these higher ordered solutions, I hoped

I a complete analytic solution, not evident from traditional analytic means,

* would become evident.

I would like to thank many people whose work aided my study.

First, I would like to recognize my faculty advisor, Capt Rodney Bain.

Without his keen mathematical insight, continuing motivation, and

I unfailing confidence, this study would not be possible. I am greatly

indebted to the work of my predecessor, Harry Karasopoulos. Much of the

groundwork of this study is based on Harry's master's thesis at AFIT. I

would also like to thank Drs. Vinh, Busemann, and Culp, whose work in

analytical flight mechanics greatly aided me in my study, and also Dr.

IStephen Wolfram, whose Mathematical code saved me many late evenings

from algebraic tedium. Finally I would like to thank my parents for their

invariable motivation and support throughout my education. Without them,

this study would not be possible.

Ted Masternak
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3Roman Letter Symbols

a Acceleration (mis2 )

B Ballistic Coefficient

CD Drag Coefficient

CL Lift Coefficient

3 D Drag (N)

g Acceleration or Gravity (m/s 2 )

3 Gravitational Acceleration at the Planet's Surface (m/s 2 )

h Non-Dimensional Altitude

I I Orbit Inclination Angle (deg or rad)

L Lift (N)

L/D Lirt-to-Drag Ratio

m Vehicle mass (kg)

q Cosine or the Flight Path Angle, y

r Orbit Radius from Planet's Center (m)

r. Planetary Radius (m)

S Aerodynamic Reference Area (m2)

3 t Time (sec)

u Speed Ratio

3 V Velocity (m/s)

y Altitude (m)

v
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Greek Letter Symbols

a Argument of Latitude at Epoch (deg or rad)

I 0 Inverse Atmospheric Scale Height (m-1 )

y Flight Path Angle (deg or rad)

6 Vehicle flight parameter

E Perturbation parameter

O Longitude (deg or rad)

X Vehicle flight parameter

0J Planet Gravitational Parameter (m3/s 2 )

1 Magnified Non-Dimensional Altitude

p Density (kg/m 3)

a Bank Angle (deg or rad)

4 ILatitude (deg or rad)

I ¢ Heading Angle (deg or rad)

I Planet Rotation Rate (deg/s or rad/s)

3 Longitude of the Ascending Node (deg or rad)

3 Zero Order Expansion or Solution

I First Order Expansion or Solution

I 2 Second Order Expansion

i At the Surface of the Planet

i Inner Expansion

C Composite Expansion

0 Outer Expansion

Unit Direction Vector

Inertial Time Derivative
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Although numerical techniques exist to obtain solutions to highly non-

linear and highly coupled systems, the trends and subtleties of the solution

are frequently lost in the volume and form of tabular and graphical data in

covering a wide range of initial conditions. By deriving an approximate,

analytical solution, relationships between dependent parameters are

discernable. Also, the derived solution is easily applied to any new set of

initial conditions or can be modified to incorporate slightly different

3 equations of motion. This study presents an analytical investigation of the

three-dimensional equations of motion for lifting entry into a planetary

I atmosphere.

In this study, the equations of motion for lifting entry into a planetary

atmosphere are derived. A non-rotating, spherical planet is assumed, as is a

3 non-rotating, strictly exponential atmospheric model. The derived

equations of motion are transformed to a variable set relating the classical

3 orbital elements to the vehicle's altitude. Solutions to the resulting five non-

linear, coupled, first order, ordinary differential equations are obtained by

using the Method of Matched Asymptotic Expansions and a computerized

3 symbolic manipulator, which performs the detailed algebraic computations.

By using the planetary scale height-mean equatorial radius (PSHMER)

3 product as a small parameter, both zero and first order expansions to the

equations of motion are obtained.

viii



I
3 It is demonstrated the analytical solution agrees with results obtained

from numerical integration of the equations of motion. Due to

I approximations made in the solutions of the first order inner expansions, the

analytical solution slightly deviates from the numerical solution at low

vehicle altitudes. The two solutions are compared further and the validity

3 of the analytical solution is examined.

I
I
I
I
I
I
I
I
I
I
I
I
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USING THE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS,
ANALYTICALLY INVESTIGATE THE THREE-DIMENSIONAL,

ATMOSPHERIC ENTRY PROBLEM

I. Introduction

Since the recent explosion of readily available computing power,

numerical solutions of complex systems described by non-linear phenomena

have become ubiquitous. In using these numerical techniques, the trends

and subtleties of the original system often become lost in the results of

I numerical analysis. By deriving a simple and relatively accurate analytical

solution to a complex physical system, a readily available analysis becomes

available which retains the subtleties of the original system

The equations of motion for lifting entry into a planetary atmosphere

are highly coupled and non-linear. Instead of using a numerical technique

to solve the equations of motion, an approximate analytical method can be

used, where the trends and patterns of the original system are preserved

and expressed in a solution which is simple, accurate and practical.

U
I

In this effort, the three-dimensional exact equations of motion for

lifting entry into a non-rotating planet are developed to first order

3 accuracy. Solutions to the equations of motion are developed by

I



considering the atmosphere as a boundary layer which perturbs the

vehicle's motion as is approaches the planet's surface. The Method of

Matched Asymptotic Expansions is used to develop zero and first order

solutions valid throughout the flight trajectory of the entry body. Due to

coordinate singularities, this study is limited to non-polar and non-

equatocial entry trajectories.

A

In this study, the non-rotating planet is modeled as a spherical body

possessing a inverse square law gravitational field. A strictly exponential,

non-rotating atmosphere is assumed with its density as a function of the

I radial distance form the planet's surface. This investigation assumes the

vehicle's trajectory is influenced only by aerodynamic forces and the

planet's gravity. Other perturbing forces, such as solar/lunar gravitational

forces and other celestial perturbations, are considered negligible. The

vehicle's lift-to-drag ratio and ballistic coefficient are assumed constant and

I prescribed.

I
I

In Section II, the equations of motion for three-dimensional, lifting

I entry for a spherical, non-rotating planet are derived from basic kinematic

and force relationships. In Section III, these equations of motion undergo

coordinate transformations to express the independent and dependent

3variables as convenient, non-dimensional orbital parameters. The first

* 2
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I
order accurate analytical solutions are derived in Section IV using the

Method of Matched Asymptotic Expansions. The five coupled, non-linear

I ordinary differential equations of motion are expanded to two separate, but

overlapping domains: the outer, Keplerian, domain and the inner,

atmospheric, domain. Each of these expansions is solved independently to

create two sets of solutions to the original equations of motion. Finally the

two solution sets are blended together to generate one solution valid over

I the entire vehicle trajectory. The validity of these analytical solutions is

examined in Section V. It is shown the analytical solutions encounter

singularities near polar orbits and slightly underestimate aerodynamic

3 turning at low altitudes. Section VI summarizes the study's findings and

presents recommendations for further study.

I
I
I
I
I
I
I
I
I
I3
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II. Derivation of the Equations of MotionI
I Introduction

U In this section, the original equations of motion are derived for three-

dimensional lifting entry into a non-rotating planetary atmosphere. The

non-thrusting, lifting vehicle is modeled as a point mass in a three-

dimensional coordinate space. The vehicle's orbit is assumed to be initially

described by Keplerian or two-body motion. Aerodynamic forces are

assumed to be the only perturbations acting on the entry vehicle.

For the sake of brevity, the derivations in this section are the

abbreviated versions of much more detailed work presented in other studies

(Vinh and others, 1980:20-28) and (Karasopoulos, 1988:9-36). Thorough

descriptions of the derivations are presented in the two excellent references

I listed above.

I
Coordinate Systems

Figure 1 defines the planetary coordinate systems used in this study.

In addition to coordinate systems referencing the vehicle to the planet,

I there is also present a coordinate system centered on the vehicle and

relating its orientation to the planet below. Listed below are the coordinate

system, their respective coordinate and unit vector representations and a

brief description of each (Vinh and others, 1980:22-24).

I4
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Figure 1. Planet Centered, Rotating Coordinate System

i Reference Unit Rotation
Coriae Vectors Rates kcito

I OXIY1 Z1 I J K None Inertial frame. Inertial reference frame
whose center is coincident with theIcenter of the spherical planet's
gravitational field. The OXIY, plane is
in the equatorial plane and the Z, axis

completes the right-handed system.

OXYZ ip jp k l wip Planet frame. Non-inertial reference
frame whose center is coincident with
the center of the spherical planet's
gravitational field and fixed with
respect to the planet. The OXY plane is
in the equatorial plane and the Z axis

completes the right-handed system.
Thus, the coordinate system rotates at

I5
I



I
the same rate as the planet, w, about the
kp axis.

I Oxyz i8 JB kel kp, j i Body Frame. Non-inertial reference
frame whose center is located at the
vehicle. The x-axis is along the position
vector from point 0 to the vehicle, the
y-axis is in the equatorial plane and
orthogonal to the x-axis and the z-axis
completes the right-handed system.I

Ox'y'z' 1W jw kw q iw, yk8  Wind frame. Non-inertial reference
frame whose center is located at the
vehicle. The x-axis is along the lift
vector (a - 0) from point 0 to the
vehicle, the y-axis is along the drag
vector (a - 0) and orthogonal to the x-
axis and the z-axis completes the right-
handed system.

1 Applying the coordinate transformations to the above systems results

in two coordinate transformation matrices. Combined, the two

transformations relate the vehicle's coordinate system in terms of the

planet's rotating coordinate system.

i~i- snOcos(O ) cos(O) -sin( ) sin( ) (2.1))
-fsin(e) cosl) cose) -sin ) sinl) ((2.1)

IzIp sin( ) 0 cos()) I zi B

* [l [ cosy)sin(y) 0i

-sin(y) cos(O) cos(y) cos() -sin(O ) 1 (2.2)
zIB -sin(y) sin( ) cos(y) sin( ) cos() J zIW

Kinematic Equations

!6



I
U

The vehicle's position vector is given as r - r iB. Differentiating this
I position vector to find the inertial time derivative of the position vector uses

Id? Bd? . .Ithe vector differentiation relationship j - d + X 1, where

.,BI
W W (( ) sin( )) 'B -B + ((W. + e) COS(O)) Ic5

I? d+)+(rcos( )(d+w)j +(rd (2.3)

I The vehicle's local velocity with respect to the Oxyz reference frame

uses Eq (2.2) and is given as

V-vjW - (Vsin(y))ie + (Vcos(y)Cos(i))Je + (Vcos(y)sin(,))ic (2.4)

Equating Eqs (2.3) and (2.4) gives the kinematic equations as

drdt Vsin(y) (2.5)

dO V cos(y) cos(,)
T r cos() -(2.6)

i V cos(y) sin() (2.7)i dt r(27

IForce Eouations

I Since the acceleration and the force on a vehicle are related, the

acceleration of the vehicle is calculated in deriving the force equations.

,I7
I



I
Taking the inertial derivative of Eq (2.4), substituting in Eqs (2.6) and (2.7)

and solving for the derivatives dV/dt, dy/dt and d/dt gives

dt F. _ g sin(y)dt m

+cYr cos(4) (sin(y) cos(A) - cos(y) sin(4) sin()) (2.8)I
v ____c o s o  V2

dt F m - g cos(y) + r cos(y) + 2wVcos(4) cos(4)

+ w2r cos(O) (cos(y) cos( ) + sin(y) sin( ) sin( )) (2.9)

Vdt m cos(y) -r cos(y) cos( ) tan(40 - cos(y) sin(4O) cos() sin()

+ 2wV(tan(y) cos( ) sin(i) - sin( )) (2.10)

IFN is defined as the lift force. FT is defined as the aerodynamic and

propulsive forces along the velocity vector and o is called the bank angle,

which rotates the FN vector out of the local vertical plane.I

The above three equations are known as the force equations. Since

this study assumes a non-thrusting, lifting vehicle, the vehicle's thrust is

Izero or T - 0 and by the definitions of FT and FN, FT - -D and FN - L.

Since this study assumes the planet and its atmosphere are not

rotating, o- 0. This assumption is commonly used in entry flight

mechanics, where the analysis is primarily concerned with the variations in

I 8I



the velocity and altitude of the entry vehicle in the portion of the trajectory

where high deceleration develops (Vinh and others, 1980:27). In his study,

I Karasopoulos showed exclusion of a rotating planet/atmosphere results in

an analysis not valid for some entry trajectories, especially where the

vehicle undergoes a long atmospheric entry period, as in very shallow entry

trajectories. This study assumes the non-rotating equations of motion are

valid and applies them to trajectories where they are accurate.

I Substituting these assumptions in the above equations result in the

* modified kinematic and force equations.

dr V sin(y) (2.11)

de V cos(y) cos(4,)
dt r cos( ) (2.12)

I.. V cos(y) sin(O) (2.13)
dt r

dV-= - - g sin(y) (2.14)

I vd. Lcos(o) V, (2.15

Vdt L -"m---- g cos(y) + Y cos(y) (2.15)

I #"in ) - cos(y) cos($ ) tan( ) (2.16)

I
Summaa

I
9
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This section briefly derives the equations of motion (the equations for

flight over a non-rotating spherical planet) for a vehicle considered as a

I point mass traveling within a planetary atmosphere. The derived equations

are repeated below for completeness.

drI- dr -- Vsin(y) (2.11)

I dO V cos(y) cos((
dt r cos() (2.12)

-11 V cos(y) sin() (2.13)
dt r

dV m- g sin(y) (2.14)

dt -m -gsnyI
V dy L cos(k) _gco zy)+V2cy) (2.15)I dt =  m rgcsy o~)(.5

I f k L sin(o) V (2.16)

dt m cos(y)r co ()tan(4)

I
I
I
I
I
I
I



I

UIll. Transformation of the Equations of Motion
I

IIntroduction

U The equations of motion for three-dimensional, lifting entry into a

non-rotating planetary atmosphere were derived in Section II. In this

section. assumptions and approximations are defined. Coordinate

3 transformations are undertaken to convert the equations of motion into a set

of coupled ordinary differential equations with convenient dependent and

independent variables The equations of motion derived in Section II are

* given as

dr
d - V sin(y) (3.1)

de V cos(y) cos( )
dt r cos(t) (3.2)

I . V cos(y) sin() (33)
dt r

idV D

dt " m " g cos(y) + -, cos(y) (3.5)

I d-- L sin(o), V2 (36dt -m cs(o)- r cos(y) cos(4) tan(*) (3.6)

I ,d1mo~

I!1



Assumgtions

Soherical Planet/Atmosphere. Although planets are usually oblate

ellipsoids, the spherical planet assumption is common in entry flight

mechanics analysis, since the ellipticity of the planets are of the order 10-2

to 10- 4 (Vinh and others, 1980:3). Thus, the error induced by this

I approximation is insignificant.

I Following the spherical planet assumption, the planetary atmosphere

is assumed to be a sphere. In reality, an atmosphere is approximately an

3 oblate ellipsoid with minor deviations due to solar storms and uneven

heating of the planetary atmosphere. Generally, these effects are present at

I altitudes above 250 kilometers, where aerodynamic forces are insignificant

except in the slow orbital decay of satellites (Vinh and others, 1980:2).

Gravitational Model Since the planet is being modeled as a sphere,

its gravitational field follows Newton's inverse square law and is given as

Ig(h)-g,(410 (3.7)g~h)- g r(h))

I
Atmosoheric Density Model The planet's atmosphere is assumed to

I be a non-rotating sphere fixed with respect to the planet. From the state

equation for a gas and the hydrostatic equation, the planetary atmosphere is

I modeled by the equation

I - -- dr (3.8)P

I

I



where A is the local atmospheric density and r is the radial distance from

the center of the planet. The I/ft term is called the scale height and

Idescribes the size of an altitude region where the atmosphere is accurately

modeled by an exponential relation.

As in many other analytical entry flight mechanics studies, it is

assumed the quantity Or is a constant for a planetary atmosphere (Vinh and

others, 1980:5). For most planets, this value is usually of order 1000. For

earth, it has an average value of about 900. Thus, solving Eq (3.8) with this

assumption yields

P - PS ( r. )  (3.9)

This study assumes the planetary atmosphere is accurately modeled

by a exponential atmospheric model given as

p-p.e (3.10)

I where y is the altitude above the planet surface. By definition, h - y/r.

Thus Py - 1 hr - h/ or

-h/e
p p. e (3.11)

where

C " -(3.12)

3 The value of c is on the order of 1 / 1000 and thus is a small number. Using

this variable as a small parameter allows the use of Matched Asymptotic

I
I 13
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Expansions to be applied to derive an analytical solution to the equations of

motion.

Aerodynamic Forces, The lift and drag parameters for the entry

vehicle are given by the following relationships, which incorporate the

exponential atmospheric density relation determined above.
_2 Pie -h / t V2S

L-CLp 2 S CL 2  (3.13)2 " 2

PS pse-h/-e v~s
D - CD 2 S  CD 2 (3.14)

2 D 2

Although CL and CD are functions of the angle of attack, Mach number

and other flight parameters, this study assumes they are constant and

-- prescribed at the beginning of the entry trajectory. This is a common

assumption when dealing with hypersonic flight mechanics (Vinh and

others, 1980:101).

Substitution of these assumptions into the equations of motion given

I by Eqs (3.1)-(3.6) gives

Irr - V sin(y) (3.15)

de V cos(7) cos(W (3.16)
t r cos( )

do V cos(y) sin(4i 3.7
i dt r co.1)

dV CD peh/t V2S 2
dt -- 2m -g. r sin(y) (3.18)

I 14
I



I CL pse -h/e V2S cos(a) V2

V dt " 2m - gs r) cos(y) + r cos(y) (3.19)

Ir
S2m cos(y) - cos(y) cos( ) tan( ) (3.20)I

Transformation of the IndeOendent VariableI
As given in Eqs (3.1)-(3.5), the equations of motion are in terms of the

dimensional variable time, t. For atmospheric entry, it is more convenient

to relate the motion of the vehicle in terms of the orbital altitude, r, since

the two major forces controlling the entry trajectory, gravity and lift/drag,

i are functions of r. To change the integration variable from t to r, the chain

rule for differentiation is used. Thus, using dr/dt relationship from Eq (3.1),

I differentiation with respect to r is defined as

d d dt I d (3.21)

dr= -t dr - V sin(y) dt

1 This transformation reduces the number of equations of motion from six to

five since Eq (3.1) is incorporated into the other five equations by the above

use of the chain rule.

In atmospheric entry analysis, a dimensionless altitude, h, is

commonly used as the independent variable of integration for the equations

I of motion. his defined as (Vinh and others, 1980:256)

Ih h- (3.22)

II 1
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Since r is currently the integration variable for the equations of

motion, a transformation relationship is needed to convert r to h. By

definition

r=rs +y-r s (1 +h) (3.23)

Differentiation the above equation gives

dr
dh rs

Again using the chain rule for differentiation yields

d d dr d
-dh -drdh -r s  (3.24)

i Applying the above definition for r as well as the differentiation

transformation for d/dr yields

d d d (3.25)d-rs ---- (.5
idr V sin(y) dt

Applying this transformation, and the definition of r, to Eqs (3.15)-

I (3.20) gives the modified equations of motion as

dO cos(()
dh" ( + h) tan(y) cos( ) (3.26)

0 sin(O)
dh ( + 1h) tan(y) (3.27)

- dV. CD rpse-hl Vs r (3.28)

dh 2m sin(y) "V( +

I1
- 16
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I

Iy =CL rs pe-h/e S cos(a) g. r. 1
dh 2m sin(y) - (1+ h)2 V2 tan(y) (1+ h) tan(y) (3.29)

# CL rs p e-h/e S sin(a) cos( ) tan(4)
dh - 2m sin(y) cos(y) (1 + h) tan(y) (3.30)

I Thus, the above modified equations of motion are expressed in a

convenient integration parameter, h. In the next section, the dependent

variables are transformed into a set of orbital parameters which are

convenient to use in the analytical analysis performed in Section IV.

I Transformation to Orbital Elements'

Ballistic Coefficient and Other Flight Parameters. In Eqs (3.26)-

(3.30), there are several lengthy constant coefficients which pertain to the

flight vehicle and the planetary atmosphere it is entering. By developing

I non-dimensional shorthand expressions for some of these terms, the

equations become easier to manipulate. The first non-dimensional term

defined is called the ballistic coefficient, B, and specifies physical

characteristics of the flight vehicle, as well as the planetary atmosphere it is

entering. B is assumed constant throughout the entry trajectory, specified

I by initial conditions and defined as (Vinh and others, 1980:256)
BPzSCD " (3.31)

I B-2mlo 2m

I To help further facilitate the manipulation of the equations of motion

the terms specifying the bank angle, a, and the lift-to-drag ratio, CL/CD, are

II 17
I



I
combined. 6 and N are assumed constant throughout the entry trajectory,

specified by initial conditions and defined as (Vinh and others, 1980:255)

- CL cos(O) (3.32)I CD

D Lsin(a) (3.33)

I Substituting the above three relations into Eqs (3.26)-(3.30) gives

dO cos()(
dh- (1 + h) tan(y) cos( )

II  sin() (3.35)
dh ( + h) tan(y)

dV BVe - h/e g5 rs
dh e sin(y V(+h) 2  (3.36)

dy B e-h / 4 91 5 1 (337)
dh esin(y) -(1 + h) V2 tan(y) (1 + h) tan(y)

ft B6 e-h / e  cos(Ob) tan(4) (3.38)

dh e sin(y) cos(y) (1 + h) tan(y)I
Modified Soeed Ratio, Recent analytical flight mechanics studies

I have determined that transforming the velocity terms, V and dV/dh, into

the modified Chapman variable, u, places the equations of motion into a

more practical form. By definition, u is defined as (Vinh and others,

I 1980:229)

S18
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I

U - V2 cos() V2( + h) cos(y) (3.39)gr gsrsI
Solving for V yields

I ug (3.40)
V -cos(y) V(+ + h)

As a convenience u is also known as the speed ratio since it relates

the vehicle's local horizontal velocity to the circular orbital velocity at the

vehicle's current altitude (Karasopoulos, 1988:45). To replace V with u in

Eqs (3.34)-(3.38), Eq (3.39) is differentiated with respect to h, keeping g.

and rs constant.

du V2 cosk(y) 2V(1 + h) ces2(y) dV
I dh - gsr + gsr. dh

I 2V2(1 + h) sin(y) cos(y) dy (3.41)

gsr s  dh

Substituting Eqs (3.36) and (3.37) into the above equation transforms

the dV/dh equation of motion into du/dh form and replaces Eq (3.36)

I du u 2Bu( 1+h tan(y)) eh/ (3.42)
dh (+h) e sin(y)I
Modified Flight Path Anfle, In Eq (3.37), sin(y) terms appear in the

denominator. Most realistic entry trajectories begin with -10* y < 0* and

often result in aerodynamic skipping, where y switches from a negative to

positive quantity. During this transition from positive to negative values, y

- 0, which could create a singularity in Eq (3.37) since I /sin(y), where y -
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I
00, is not defined. To eliminate this potential singularity as well as to

simplify the equations or motion, the flight path angle, y, is transformed to

I the variable q, given as (Vinh and others, 1980:257)

q - cos(y) (3.43)

Differentiating the above relation with respect to h yields

dh sin(y) d (3.44)

Using the above equation and the definition for the speed ratio

transforms Eq (3.37) into a differential equation for q.

I q I B Ne -" / (3 .4 5 )

dh I +h 1u C

Thus, the equations of motion are now given as

du u 2Bu(l+X tan(y)) eh/e (3.46)
dh (1 +h) sin(y)

... aA . (3.47)

Ih dI 1+h u c

dO cos() (3.48)
dh (1+ h) tan(y) cos()(

0 sin(O)(39
S ((1 + h) tan(y) (3.49)

d B8 eh/e cos(4) tan(O) (3.50)
dh c sin(y) cos(y) (1 + h) tan(y)
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where q - cos(y).

Classical Orbital Elements Before using the Method of Matched

Asymptotic Expansions to analytically solve the above equations, they are

transformed again to express them in a form which will simplify the

analysis found in the next section. Currently, the independent variables are

the speed ratio (u), modified flight path angle (q), longitude (W), latitude (4)

I and heading angle (4). During the orbital lifetime of a satellite, these

variables are constantly changing. By transforming the variable set (0, 4)

I and 4) to the set of classical orbital elements (I, 0 and a), the resulting

analysis is greatly simplified. This simplification results from the classical

orbital elements being constant for two-body motion, where there are no

perturbing forces (Wiesel, 1989:34-35, 58). As shown in the next section,

the equations of motion will be analyzed in two domains, exo-atmospheric

I and atmospheric flight. This transformation will greatly simplify the exo-

atmospheric (two-body) analysis, since two of the equations of motion are

constant.I
Inclination Angle. I To derive the equation of motion

I describing the inclination angle, the spherical trigonometric relationship

(A.7) is used and given below.

cos(I)-C os(4)) (3.51)

Differentiating the above equation with respect to h and solving for

I dl/dh gives

dl sin(O) cos()) A_ cos(W) sin()) (3.52)
dh sin(l) dh sin(l) dh
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I Substituting in Eqs (3.49) and (3.50) for the differential relations

d/dh and d/dh and using the spherical trigonometric equations (A.5) and

(A.1 1) gives

dl B 6 cos(a) eh/e (353)

dh e csin(-y)cos(y)

Longitude of the Ascending Node. Q2 To derive the equation of

3motion describing the longitude of the ascending node, the spherical

trigonometric relationship (A. 15) is used and given below.

sin( ) - sin(l) cos(O - 2) (3.54)1
Differentiating the above equation with respect to h and solving for

Sd/dh gives

d cos( ) d cos(O - W) cos(l) d _ (355)
dh - sin(e - () sin(l) dh - sin(e - ) sin(l) dh dh

ISubstituting in Eqs (3.49), (3.50) and (3.53) for the differential

relations d4/dh, d#/dh and dI/dh and using the spherical trigonometric

equations (A.4), (A. 10) and (A. 11) gives

dM B 6 sin(a) e-h/E (3.56)dh - e sin(l) sin(y) cos(y)

U ArEument of Latitude at Enoch. c To derive the equation of

3motion describing the argument of latitude at epoch, the spherical

trigonometric relationship (A.4) is used and given below.

sin(a)- sin(I) (3.57)"sin(l)

I
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Differentiating the above equation with respect to h and solving for

da/dh gives

I d- cos( ) sin(a) cos(l) dI (3.58)
dh cos(a) sin(l) dh cos(a) sin(1) dh

Substituting in Eqs (3.49) and (3.53) for the differential relations

I] d /dh and dl/dh and using the spherical trigonometric equation (A. 11)

I gives
da I B & sin(a) 

(3 59)Sdh- (I+h) tan(y) - e tan(1) sin(y) cos(y)

I 5-

I The above derivations develop the three-dimensional equations of

I motion for atmospheric entry. They relate the classical orbital elements to

the non-dimensional altitude.I
du u 2Bu( I+h tan(y)) e-h/C (3.60)
dh " - (1+h) e sin(y)

Iq q .i B he-h/C3.1
dh(0+h) -u C(3.61)

dl B 6 cos(a) eh/c (3.62)

Sdh sin(y)cos(y)

dQ B 6 sin(a) e-h/e (3.63)
d"" c sin(1) sin(y) cos(y)

I
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I
I dci I Bbsin(a) (3.64)

dh (I.h) tan(y) - c tan(1) sin(y) cos(y) eI
I
I
I
I
I
I
U
I
I
I
I
I
I
I
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IV. Solutions to the Equations of Motion Using Matched

3 Asymptotic Expansions

I
In Section III, the five equations of motion for three-dimensional

I atmospheric entry were derived and are repeated below.

du u 2Bu( l+X tan(y)) eh/e (4.0
dh - ( -h) esin(y)

3 ~jq B N -h/e 42
dh (1+h) e(4.2)

I
dl B 6 cos(a)
dh e sin(y)cos(y)

_ B 6 sin(a) e-h/e (4.4)
dh c sin(I) sin(y) cos(y)

U da I _______

da IB 6 sin(a) eh/0. (4.5)

dh (l+h) tan(y) - c tan(I) sin(y) cos(y)

The above five differential equations are first order, non-linear

I ordinary differential equations (ODEs). Although there exist techniques to

3 solve any first order, linear ODE, the non-linearity and coupling among the

five equations prevents them from being solved by traditional analytical

Smeans (Rainville and Bedient, 1981:36). To preclude a numerical solution

to the above ODEs, and thus retaining some insight into the mechanics of

I the problem, a higher order analytical solution is used (Vinh and others,
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1980:254). The solution method implemented is called the Method of

Matched Asymptotic Expansions.

The Method of Matched Asymototic Expansions

The problem of atmospheric entry is fundamentally a situation where

an initially small perturbation, the atmosphere, is introduced into the

equations or motion, but its exponentially increasing effect causes the

orbital elements to undergo very rapid changes over a very narrow region

of the independent variable, the vehicles's altitude (Nayfeh, 1981:270-279).

Thus, the atmospheric entry equations are modeled as if the atmosphere

acts as a boundary layer adjacent to the orbital region solely specified by

I Keplerian, two-body, motion, neglecting other perturbing forces (Vinh and

others, 1980:259). From the perspective of the entry vehicle, its orbit is

initially prescribed by gravitational forces, but as its altitude decreases, it

3I enters a boundary layer region formed by the atmosphere. The

aerodynamic forces of lift and drag will vary drastically over a small range

I of altitude, as compared to the mean orbit altitude, and thus dramatically

alter the orbital parameters.

The Method of Matched Asymptotic Expansions is chosen over other

3 analytical techniques such as the methods of multiple scales and straight-

forward expansions since the Method of Matched Asymptotic Expansions is

more adept at handling non-linear differential equations (Nayfeh,

1981:279). In this method, the solution to the problem is represented by

two expansions, each of which is valid in part of the problem domain, either

3 exo-atmospheric or atmospheric altitude. Since the two expansions have
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some overlap, they are matched to create one composite expansion valid

over the entire problem domain.

Deriving the Outer and Inner Exoansions Using Mathematical

The process of deriving the outer and inner expansions using

Matched Asymptotic Expansions is a very laborious and tedious exercise in

algebraic bookkeeping. To expedite these derivations, a computerized,

- symbolic manipulator, MathematicalT, is used to perform the outer and inner

expansions. Using Mathematical decreases the time performing algebraic

manipulations. Thus, more time is spent in analysis of the derived solutions.

The computer code .. J in this study is presented in Appendix B, as is the

_I1 methodology use4 ,o develop the code.

In the following expansions, two of the ten expansions are performed

to illust, ate the techniques involved. The remaining expansions are

I 3presented without derivation and are as given from Mathematical output.

I Outer ExansionsI
The solutions developed for the exo-atmospheric (non-boundary

3 layer) portion of the domain are called the outer solutions. These solutions

are developed from asymptotic expansions of the equations of motion using

I the small parameter, e. The outer solution variables are denoted by the

superscript "0" and are assumed as follows (Vinh and others, 1980:259):

u ° = u0 (h) + u(h)e + u2 (h) + O( )
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I

q0 q0(h) + qI(h)e + q2(h)2 + O(e )

3P loh h)(h).1t(he+120W + O(e3 )

If -o No(h) + Q Ih)e + '12(h),e2 + O(d3)

cx0 - %a(h)+a,(We + a2(h)h2 + O(c 3)

y 0 yh(h)+y IWe+yh)Y 2 + O(3) (4.6)

The approximate solutions for lifting atmospheric entry are of order

c0 (Karasopoulos, 1988:82). The solutions derived to d and higher orders of

e act as correcting factors to the zero order solutions and account for

decreasingly significant physical characteristics of the problem. This is

3 evident in Eq (4.6), since the solution order (u I, u2,..., for example) is

multiplied by corresponding powers of e. Thus, the zero order solution

I gives the primary behavior of the variable and higher order solutions add

5 corrections which progressively bring this approximate solution in line with

the actual solution.I
du/dh Outer Exoansion This expansion is performed to illustrate the

I techniques used in deriving an expansion. The original ODE is given in Eq

(4.1) as

du U 2Bu(I+X tan(y)) eCh/e3 Fh+1h) " esin(y)

3 Next, straightforward expansions for the variables in the above ODE

are defined. The expansions for u and y are assumed in Eq (4.6) while

I templates for tan(y) and I /sin(y) are derived in Appendix C and given as
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3 Eqs (C.1 1) and (C.13). Substituting the expansion for y in the two templates

gives

[sin(YO Y14 + Y2 E2 + OE )-

C___+ y(cosIy+ ry, 2(1 * oy) J2O()2 C3sin(y 0) - MAn2 YO) 2i3(.o si2 2

C2+siCtn (y) i 2 y Y1 O

tan(yo +Yic + Y2C ~ )-ta~ 0  cos2(-y0)

Y1 2sin(y 0) + i... c2 +0(c3)

3~~~~ +cos
3(y0) +cse~

Substituting the above expansions in the original ODE gives

duk du1  dU2 2 U0 + UIIE u262 + OUc 3 2Be-h/c3dh +dh dh (l~h)

3O (u+ UC+U2 E2 + o(3))[1+N tan(YO + YIC+Y 2 c2+ 3+ Oc3)]
c sin(~YO+ yIC+y 2 C2 + O(3 ))

U0 + -V U + U2 
2 +0(c 3) 2B(UO Ute u2 2 + O(c3))

IIh
X[IN tn~y)+ c+yj2 sn(y ) + y 2

co ( 0) cos3(YO) cos2(Yo )) )J

X I y~cos(yo) 1E+rY + cos2(Y0)) -2 cos(y) C23 sin~yo) sinMAYO) 2 sin3(y0) sin 2 (Y0  J
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I e-hie ~3)

At this point, all the terms on the right hand side are products of

terms which are sums of constant coefficients and powers of E. Thus,

3 multiplying out the above equation and equating terms of identical powers

of e, will give the desired expansions (ODEs) of order e. Since exp(- 1 /E) is

smaller than any power of e as e-*0, e - 0 (Nayfeh, 1981:260). This

greatly simplifies the expansion above and is frequently used in this study.

Thus, the above expansion is multiplied out and the order e terms are as

*follows

! tems: duo  u°
terms: dh .- (l+h) (4.7)

terms: dh . (l+h) (4.8)

I terms: d. U2  (4.9)
dh 0_"(I +h)

d_/dh Outer Eloansion As derived by using Mathematica", the

3dq/dh expansions are grouped by c order as follows:

terms: dq  q°I + h (q 2 (4.10)

E Iterms: -, . + q 2 (4.11)dh I+ h UOu o  I U, + h u
o  (.1

dq2 3292  3 2o 3qO2qju1  2eterms: ( u- + - 2q 0 3 )(4.12)d , Uo Uo uo 0 2-u
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I

I dI/dh Outer Exoansion. As derived by using Mathematicam, the

dI/dh expansions are grouped by c order as follows:

cd terms: (4.13)

1 -0I c terms: dh. 0 (4.14)

2 d2 terms: .0 (4.15)

Idf)/dh Outer Exoansion. As derived by using Mathematicalm, the

d!/dh expansions are grouped by c order as follows:

dE terms: (4.16)

El terms: dh (4.17)

Sterms 0 (4.18)

da/dh Outer Expansion. As derived by using Mathematica m , the

da/dh expansions are grouped by c order as follows:

c0 terms: d1 (4.19)

dh (I + h) an(y o)

c Iterms: 0 YO (4.20)

terms: c Y12 cos(yO) Y2dh (1 + h) sin (yo)(1 h) sin (Yo) (4.21)

13
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Outer Exoansion Solutions

2 Tem The complete set of c' term outer expansion differential
equations are derived above and are repeated below.

duo Uo (47)
3 dh 0 +h)

dh l +huo ) (4.10)

dlo
I dh 0 (4.13)

I-~ -a0 (4.16)dh

dh (1+ h) tan(-yo) (4.19)

Solutions to this set of differential equations are derived in Appendix

3 D and are given below.

I u° IC+ (4.22)

qo C'- CO 2 (4.23)

10 - C03  (4.24)

I ~- C04 (4.25)

ICO
a0 " Sin ' l  I-+ h.+ Cos (4.26)
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I1_ Termi. The complete set of e1 term outer expansion differential

3 equations are derived above and are repeated beiow.

dut u (4.8)
dh (1+h)I

Uo I + h 1+ I+ h Oo

I d1. 0  (4.14)dhIJ dC2 O 4.1

dh 0 (4.17)

I~ da I _____

dh (I + h) sin2 (yo) (4.20)

Solutions to this set of differential equations are derived in Appendix

D and are given below.

I U 1 , (4.27)

q, " 1 3(4.28)*3
(2 - Co1C02(1 + h)) 2

I- C13  (4.29)

I) C14 
(4.30)

I
I
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1 c 2  " C Ic, 02NJ O) 0+h) - (# *-0 +COIC124
I - C012C+ CIs (4.31)°' (,- 02o V Co/-o 20+h) -CoCo2(""h:

Terms The complete set of e2 term outer expansion differential

equations are derived above and are repeated below.

du2  2
dh (+h) (4.9)

d2  ( 2  +3q 2 3 2  +(1 uO 3u (4.12)
dh u0  UO U O u U03 u0

I 012  (4.15)dh

d O (4.18)
dh

da Yi2 cos(Y) Y(2
dh (1 + h) sin3(yO) (I + h) sin2(YO)  (4.21)

I ~Inner Exonin

I
The solutions developed for the atmospheric (boundary layer) portion

3 of the domain are called the inner solutions. These solutions are developed

from asymptotic expansions of the equations of motion using the small

I parameter, e. The inner solution variables are denoted by the superscript.

I and are assumed as follows (Vinh and others, 1980:260):

ui - Uo() + u,(I) + u2(C( 2 + o(C3
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q. qo(R) + 000E) + %2We) ' + 0 ( d3)

I i 1 0(R) + 11(M) + 12(R)C2 + ( )

I i. 40 +  M(e) + C2(O) 2 + O(d3)

I a " o%(t + aj(t)e + a2(R)C2 + 0(d )

Y qt q 0(+ , W( ),q 2() +2 ,O( 3 ) (4.32)

I

To derive the inner expansions, a new independent variable is
required to force the equations of motion to focus on the boundary layer

3 (Nayfeh, 1981:262). The magnified variable, t, becomes the new

independent variable for the five coupled equations of motion. Thus the

3 equations of motion undergo a stretching transformation which focuses

them on the behavior found in the boundary layer. t, the magnified non-

I dimensional altitude, is defined as

-- or h-e

I Using the chain rule for differentiation gives an expression for dL

Id dh d d d I dd dh-.V -F (4.33)
d- dtdh tdh ~d d

Substituting the above transformations for both h and dh into the

3 original ODEs (Eqs (4.1) - (4.5)) gives the ODEs as functions of the

stretched variable, .

du Cu 2Bu(I +Xtan(y))e.t (4.34)
Sdt (I ++e) - sin(y)
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I q u
d ( ) Be' (4.35)

d (I +c C u - )I dl _____dI -B 6 cos(a) e-t 4.
dt sin(y)cos(y) (4.36)

I d B 6 sin(a) e- (4.37)
dt sin(l) sin(y) cos(y)

da F_ B 6 sin(a) e' (4.38)
d (I + e ) tan(y) - tan(l) sin(y) cos(y)e

du/dt Inner Exoansion This expansion is performed to illustrate the

techniques used in deriving an expansion. The original ODE is given in Eq

(4.34) as

du eu 2Bu( 1 + N tan(y)) e-
Id (1+ et) - sin(y)

Next, straightforward expansions for the variables in the above ODE

are defined. The expansions for u and y are assumed in Eq (4.32) while

I templates for tan(y), 1 /sin(y) and 1/( 1 + e ) are derived in Appendix C and

given as Eqs (C. 13), (C. 11) and (C. 16), respectively. Substituting the

expansion for y in the two trigonometric templates gives

[sin(YOyo+ey 2 t2 + O(,E))}1

I ___ os y J2 (1+ cos(yO))
sin(y°) s £ ( 2sin3(y°)

I
I

| 36

I



I tan~yoy~'e, + O(3)tan(yo i.I

COS3o (YO)l (3

Substituting in the expression (1 + e) into the algebraic template gives

1 + 2c2 3(

Substituting the above expansions in the original ODE gives

du0  dul dul 2 U+ I+ 2 +OC3') -

GO (u+ UtC+U 2c2 + (c),E))[1.?itan(YO + YVE+ Y2 2 + O())] O(

CX O U IC + U21E 2 + Oc3) C.0(cE 3)Oc3)- B -

X O UC U6 +0(c3))

V~0  COS(yo) IkCOS3(YO) CosZ yo)) j

___ y cos(y ) E+Y1 2( 1.COS(y))y osy \]I x~~sin~~yo ~ ~ ( Zsin3(y0) si Y)jZJ,(3

I 37



At this point, all the terms on the right hand side are products of

terms which are sums of constant coefficients and powers of e. Thus,

I multiplying out the above equation and equating terms or identical powers

or e, will give the desired expansions (ODEs) of order c.

t s 2Buoe_(I + Ntan(yo))
c terms: - - sin(yo)  (4.39)

I 61 terms: .A .. _Uo - 23e_ [u, I + Ntan(yo)) no

I
Uo~YCOS(yo)( I + Ntan(yo)) N uO y, 1

sin2 (Yo) + cos2(yo) sin(yo)J (4.40)

I __

terms N.a- ?U 0  Y1 y 2sin(yp)
Sterms: - ul + U - 2Be .sin(y o) cos(yo)  cos3(yo)

+flI+ tnyo)Y [2 (1 +cos2(yp)) o~

+ uo~i+Mane 0))[ sin3(y0) sn(pI,
NujY I  ujYicos(Y0)(1 + Ntan(yo))

+ cos2(yo) sin(y ) sin2(Y'o)

UoY ,2  u2(0 .+ an(yo)) (4.41)

sin2(Yo) cOs(Yo) ' sin(yo )  I

dg/dt Inner Expansion. As derived by using Mathematicatm , the

dq/dh expansions are grouped by e order as follows:
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C, terms: - N Be-4 (4.42)

terms: d- .q 0 -1 0I (4.43)

Jterms: d u02(1-uj- uO)+qOQ-l1)+qi( -O IJ+2 O (4.44)

I dI/dt Inner El~ansion. As derived by using Mathematicalm , the dI/dh

expansions are grouped by e order as follows:

Fterms: (4.45)d- sin(y0 ) cos(y0 )

I- terms: IB~e4 [y,cosao -

alsin(a%) 1(4.46)
sin(-Y0 ) cos(y0)J

H terms: m B~e t(y2COS(eiO) -y~alsin(cx)) -Sf2Y)

Y 2cos(qD ____

+sin(y0 ) cos(y 0) (CO5?y) - sin2(y0) -i

n+ Y, 2)cos(%) + a2 sin(cr;0)

2 sin(Y0) cos(y 0 ) (447

I 39



dQ/d& Inner Exoansion. As derived by using Mathematical, the

dQ/dh expansions are grouped by c order as follows:

terms: Bfo ]8e- sin( W (4.48)
dt sin(10) sin(-y0 ) cos(-y0)

E1 terms: _ Bbe- Ysi ~ ( -0A2'0- ~2(-y0))

11 sin(ap) cos(10) alcos(o;0) (449
sin 2(10) sin(y0 ) cos(yD) ' sin(I0) sin(-y0) cos(yo)J I

eterms: dilB6e-4 -I -- I yjalcos(%z)
d I(cos2(Yo) sinT(yo))L sin(10)

Isin(y 0 ) cos(y0 ) sin(cxo) sin(I 0) sin(%0 ) sin(10) - sin2(10) J

+ [ 21+Csn2(1) +asin(a 0 ) cos(cr0)
sny) cos(-y0 ) sin(cto) sin(10) 2i2) +a

2 YJ 2(1 +sin~co

I -sin(I 0)(02 + aI Isin(%z) cos(Nz))JJ (4.50)

I da/d& Inner Eigansion. As derived by using Mathematical', the

da/dh expansions are grouped by e order as follows:
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cterms: Uq - an1 0  sinW)co~ 0  (4.51)

d tan(0 ) s-yo e ysi(-y) _ _

61 terms: dal I L B"' cs y0  in(Y)

I I11 sin(%a) alcos(%a) 1
MAn2 IO) sin(y0 ) cos(.y0 ) ' tan(10) sin(y0) cos(y 0 )J (4.52)

terms: da2  1 1 6- I- I ) y I a Icos(c 0)
d~ sin2(y0) -tan(y 0 ) t~oz 0 -sif2(Y)) L tanfl)

+____________ _ YJ y2 yIlsin(a0)]

in(y0) os(y0 ) sin(%0) tan(10) + sin(a0) tan(I0) stnM(IO)J

+ 12Cos(, ) _ 2(1 si 2(a))
sin(yo) cos(yo) sin(cE0 ) tan(I0 ) Sifi+si

cos(Ie)cos(%z)(E 2cos(%z)-aj sin(%g)) -1+ Isin(IO)co~o]

Inner Ex~ansbon Solutions

goIim. The complete set of coterm inner expansion differential

equations are derived above and are repeated below.

du - 2uoe- ( 1 + h\tan(y 0 )) (4.39)
dt sin(y0 )
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I

I . Bq (4.42)

I d1o B6e - cs() (445)
df sin(yo) cos(yo)

BN]6e- sin(%0 ) (4.48)
0 sin(1o) sin(y ) cos(yo)

aB be-  sin(c( .)I = - tan(I0 ) sin(Yo) cos(Yo) (4.51)

I Solutions to this set of differential equations are derived in Appendix

E and are given below.

uO "KO, (NBe-4+ K02) 2ex4l~ COs-1 ( hBe- + K02 ] (4.54)

qo" -X B e - 4 + K02 (4.55)

o In tan " +K

10 - Co&-co()f Io( 
+" 

4t (45 6)

* o-Cs(CS) -b (457)

m cossKoO)

I
-lCsi (K( 0 3) 2

cos(K03)

-Sin- sm(KoA (4.58)

I
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-Sin[ 
sin(K,03)

2os NB 02 \\1 2
-cos2(K 3) co (n (tans ( B K ) J+K 05JJ J

Term The complete set of el term inner expansion differential
equations are derived above and are repeated below.

du, u -21  ju,( I + Ntan(y 0))
dt I~o2 e sin( y0)

3 uOyIcos(y 0)(I + Ntan(yo)) X uOy 1j
si 2 ~o~+ ~~n oJ(4.40)

MAYO (y)sny)

dt mqO -I + (4.43)

i, Bbe- [ylcos(z)( a() i2n) - 4.46
d S2yo) -sin(y 0 ) Io~o (.6

3 d 2 -Be[ysin(%0) (COFY, -

11 sin(%~) cos(10) cxlcos(%) (449I~i~ sn( 3 sin(y0 ) cos(y0 ) sin(IO sin(y0 ) cos(y0 )
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I
3 dcl. 1 _6e [isin(o) ( 1 -

d - tan(y ) tan(1°) cOs2(Y) -siny))

1I sin(a0 ) alcos(cr) ]( ,
sin(o) sin(y o) cos(y o ) tan(10 ) sin(y o ) cos(yo) (4.52)

I Solutions to this set of differential equations are derived in Appendix

3 E and are given below.

u- X]e + K02 )2 exp(- Cos- ( hBe- + K0 2 )

X 1K..I I + 2K°I (K12 + K02 K12) R + 1) -21 ,  l Sin-ifNBe_ + K02)

I ( N(Be -4 + Ko2 ) 2 , 0 K

I x 1 -2J(1Ko2 )1 ,,--1(Be-4o,),2l- 2Ko2(Be -+Ko 2 )+ (4.59)

q, -K121 (KoW - ,B,,-) + K12 (4.60)

K132 - XBe-4 0

I -

I+[KlIK3 + Kl134 (1[- K 15) l tan 4 o l- + 2
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K0 OS-______+_K02_) [Cos'( Be + K02)]
02 Cs - K02 )

8[Cos'(NBe +K02  (4.61)

8I
K141  K, 32 - ?B~ K 2 133.J

14 K14 + N - 4 (B + K02) 2 Be- + K02

I
+ KI43 I4tan(+ Cos(Be + K02

[2

I+(K 132 K 142 +K 144 E2- K15s)) [4 In ( Be_ K02) (?Be_ + K 22)2]

K02 K 144 C oS-' (\Be-. K)

6 40

SK14 [[Cs (\Be- + K02)]? [Cos('Be-t + K02 ) 4.62)

U + K.6[( B K0 )] [Cs(B K

3a, -KjS -Sin-'(hBe-t+ Ko2). K

x In [2 j(1.Ko22l_(Be-+Ko2)2] -2K 02 (NBe-+Ko 2 )2 (4.63
i hBe-t

I 45
i



* 2 Trs The complete set of J2 term inner expansion differential
equations are derived above and are repeated below.

du (u _________

- - U1 + U0  213e)CO ~O cos3(y0)

K + u0(1 + Ntan(yo)) Yt( +cs(y Y2COS(YO)]
2sin3(y0 ) -sin

2( yO)

NUIY1  uty,cos(y 0 )(1 + Ntan(yo))I+ C052(y0 ) sin(y0 ) -i2(o

NUOY1 2  U20 + ?Ntan(Y0))}(.1
si yO) cos(y0 ) sin(y0 ) (.1

dq 3 2 _ __1

Iq- -d C I- I - O +~e f(qo( - +~~i~~) q I uO 4.44

20 _ _

sin(y0 ) cos(y 0 ) (C-os 2( y) -sin 2(y- )

* + yj2cscO +a '~O
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d2 . Bbe- o2 1
0 -si2y) [YOI OS

y1 
2  

____2__ yt,sin(o) cos(Ip)]

+ sin(y0 ) cos(y0) sin(%0) sin(10) + sin(%*) sin( 0o) - ilo

1 [I A ( +cos2(Io))+asn% o~o
+-i-n(y0 ) cos(y0 ) sin(%t) sin(10) 2i20

a,sin2(%)y 2 s~

cinos ( 1 + ii() cos(ao))] (4.50)

It ddc 2 - -a~o IC~o - MAYO) W~Os~O)

_________________ Y2 - y,1,sin(xo)I + ~~sin(y 0) os(y0 ) sin(%z) tan(10) + sin(%~) tan(l 0) - MA2(IO)J

iny)cos(y0) sin(%~) tan(lo) I s( 1) - 1+sna

I +cosIo~os~~)(a~cs~a)~a2si~g - 12+alllsin(C%)cos(Czo%)]( 53)

3Matfhing Asymortotic Epnin
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I

Once the asymptotic expansions for the equations of motion are

I derived, the outer and inner solutions are 'matched' to reduce the number of

unknowns, the constants of integration, resulting in an equal number of

initial conditions and constants of integration. Thus, the final solutions to

the equations of motion, known as the composite solutions, are used to solve

entry trajectories.

3 The underlying idea of using outer and inner solutions is to derive

two solutions which model the two dominant forces acting on the entry

vehicle, gravity and air drag. To model each of these forces, two scales, the

I independent variables, are used to derive two separate expansions; each are

valid in part of the domain of the entry problem, but neither covers the

entire domain of interest. Although each of the scales do not cover the

entire domain, they do overlap, or have regions where both expansions are

K valid. Since the expansions having neighboring regions of validity, they are

3 blended or matched, resulting in one composite solution which connects the

two previously separate solutions.

3 In this study, Van Dyke's matching principle (Nayfeh, 1981:282-283)

is used to equate the outer and inner constants of integration. Van Dyke's

I principle states that the mth inner expansion of the nth outer expansion

equals the nth outer expansion of the mth inner expansion, where m,n are

integer values. Simply stated, where y is the derived expansion and i and o

3 are the outer and inner expansions

*[(Y)O~T -[(Y)i] (4.64)

I
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I To obtain the inner expansion of the outer expansion, the outer

expansion is rewritten in terms of the inner variable, , and is expanded for

I small F, keeping constant. To obtain the outer expansion of the inner

expansion, the inner expansion is rewritten in terms of the outer variable, h,

and is expanded for small e, keeping h constant. The c0 terms of the two

3 resulting expressions are equated, thus expressing the inner constants of

integration, Kij, in terms of the outer constants of integration, Ci, correct to3 0(c).

I
Zero Order c MatchinfI

In the following sections, Van Dyke's matching principle is applied to

the c0 inner and outer expansion solutions. The outer expansions will be

Irewritten in terms of the inner variable first, and then the inner expansions

will be rewritten in terms of the outer variable. Both composite expansions

I will be expanded ror c and their resulting c0 terms will be equated, resulting

in the inner expansion constants of integration being expressed in terms of

the outer expansion constants of integration.

Ii e Inner Exoansion of the Outer Exoansion Solutions. In this section, the

rive outer expansion solutions are rewritten in terms of the inner variable

and expanded to obtain e0 terms.

MaLtching Expansion for uO. From Eq (4.22), the co outer

* expansion solution for u is

I uo)+
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Rewriting the outer variable, h, in terms of the inner variable, , uses

3 the definition h - c . Substituting this in the above equation gives
0 O

Using the binomial expansion derived as Eq (C.1 6) gives

I ,1 " I -3+ + - 0(c

3 Thus, the inner expansion or the c0 outer expansion solution for u is

[(uO)lJ'CO° (4.65)

Matching Elnansion for o.. From Eq (4.23), the c0 outer

expansion solution for q is

(q)0 ~ CO C0 2 ~ ~ ___________

0 ICO.CO2(' + h) -( + h)- COIC 02(1+h- 2

3 Rewriting the outer variable, h, in terms of the inner variable, , uses

the definition h - c . Substituting this in the above equation gives

(q (-Co,1 Co2e2 +: 20,-Co. Co,),c + (2 -CoI C02)) '

3 Using the binomial expansion derived as Eq (C. 17) gives

11

(C.: 0 o2j2+ 2(1- COIoC 02)c + (2- COIC 02)) " (2- CO.C02) Y'

I 0(c)

I so
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I
Thus, the inner expansion of the co outer expansion solution for q is

2-C01C02- (4.66)

I Matching Exoansion for Io.From Eq (4.24), the c0 outer

expansion solution for I is

I (I°)°" C03

By inspection, since there is no dependence on h, the inner expansion

I of the 0 outer expansion solution for I is

I [(Io)ol'"C 03  (4.67)

Matching Exnansion for %. From Eq (4.25), the co outer

expansion solution for Q is

(N)0-cOo

By inspection, since there is no dependence on h, the inner expansion

I of the co outer expansion solution for 02 is

*()li-C (4.68)

Matching Expansion for g.. From Eq (4.26), the co outer

expansion solution for a isI CO
3 (Io)°-si - +h + CosI- Co 01 c02

I
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Rewriting the outer variable, h, in terms of the inner variable, 4, uses

the definition h - e 4. Substituting this in the above equation gives

(Co. Sin-1 + Cos
_ 1 C0o2 C02.l

Using the binomial expansion derived as Eq (C. 16) gives

+ .1 + 0(c)

Thus, the inner expansion of the d outer expansion solution for a is

5(OOi in-' I- O (4.69)I -

Outer Exoansion of the Inner Exeansion Solutions. In this section, the

five inner e oansion solutions are rewritten in terms of the outer variable

and expanded to obtain d terms.

Matching Expansion for uo.From Eq (4.54), the c0 inner

expansion solution for u is

I(uO) KO(?Be-+ K02 )2ex4-1Cos( \Be+ K02

1 Rewriting the inner variable, , in terms of the outer variable, h, uses

3 the definition - h/e. Substituting this in the above equation gives

()- K01 ~e"+ K0 )2 ex4-1 Cos-' (hBeh/e, 0 )
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Since exp(- 1 /) decreases to zero rapidly as e-,0, e-h/e - 0 (Nayfeh,

1981:260). Therefore

hBe h/ C + K02 - K02

Thus, the outer expansion of the d inner expansion solution for u is

1 (uO)JO - K01 K02 2 ex4z Cos' (K0 2)] (4.70)

Matching Exoansion for 0 . From Eq (4.55), the c0 inner

expansion solution for q is

S(q)i" - Be-.4+ 0 2

Rewriting the inner variable, t, in terms of the outer variable, h, uses

the definition - h/c. Substituting this in the above equation gives

(qo) . h Be-h/,e + K02

Since exp(-1/) decreases to zero rapidly as c-,0, e-h/e - 0 (Nayfeh,

1981:260). Therefore

-N Be - h/ + K02 - K02

Thus, the outer expansion of the c inner expansion solution for q is

[ (q 0 )iJO - K02  (4.71)

Matching Exoansion for I . From Eq (4.56), the cO inner

I expansion solution for I is

I
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I

J [ 8 ((~ Cos' j (NBe- + Ko2)+K 5

(0)i - COSA'[cos(Ko3 c~ In tan~ Col K2 ) o

Rewriting the inner variable, , in terms of the outer variable, h, uses

the definition = h/c. Substituting this in the above equation gives

-f [ - ( (- Cos-l(IBe-h/ + K02) "
('s)i Cos-Icos(KO3)co In tan C 2 + K051J

Since exp(- I/A) decreases to zero rapidly as e-+O, e-h/e - 0. Therefore

I ,Be- h/e + K02 - K02

Thus, the outer expansion of the c0 inner expansion solution for I is

[(i) 0O Cos-I cos(K) ln(tan(n + Cos-I(K 02) + KO (4.72)

Matching Expansion for g%. From Eq (4.58), the c inner

I expansion solution for a is

I - Sin(((K3)

I
SinI[ s (1,,) sin(K03)

lCoss,( -o42) +Kos) ) 1/2

Rewriting the inner variable, , in terms of the outer variable, h, uses

the definition - h/c. Substituting this in the above equation gives

I
I 54

I



Sn-,' sin(K 3)

In) San Cos 1Q(Be-h/eK,2 '+ 1/21

111-cos2(K03) CosiN[ 14n a(~' 2 )KoJJ

Since exp(- 1 ) decreases to zero rapidly as e-+O, e-h/e - 0. Therefore

, Be-h/e,+ K02 - K02

Thus, the outer expansion of the e0 inner expansion solution for a is

( sin(K03 ) (

I (C)i 0°  sin 1 {( Io)1J

Sin1 sin(K0 3) 1

U [(1 -COS 2(K0 3) COS2[N l(ta(14+CO 2) )).J

Matching Exnansion for a. From Eq (4.57), the c0 inner

expansion solution for Q is

( K)i - Cos-' (cos(o)i)) K04

I1
-co,-in (, 1' B, K, / 2

I Co1 f COSIK3)cosLN In tan(~CS 14[+2 )I))KJ} V
cos(Ko3)

Rewriting the inner variable, , in terms of the outer variable, h, uses

the definition - h/e. Substituting this in the above equation gives
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I

siT tn(K03) '2,1/2

- 1 cos(K 0 3)COSk In(tan(+ ) +K1

I 1cos(K 03)

Since exp(-1/) decreases to zero rapidly as e-+O, eh/ e _ 0. Therefore

X Be - h/e + K02 -K02

Thus, the outer expansion of the CO inner expansion solution for Q is

0 ~cos{[ (aO 0)I l9)I -K04 -Cos - cos(K03) ) (.)

2 sin(K03)Z1/
-K04 - COS- I -cos( K3  ItaTrCos(K 0  2) K

n3CS!( a(+CO ( 2 ))) KoJI cos(Ko3)

Matching Zero Order c Solutions. Van Dyke's matching principle is

now used to correlate the inner/outer expansions and outer/inner

expansions. From Eq (4.64) the matching principle states, where Y is an

arbitrary expansion
[(,)o],. [(,),]o

I
Thus, the inner/outer expansions and outer/inner expansions derived

I above are equated, resulting the the original inner expansion constants of
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I
integration, Ko, being expressed in terms of the original outer expansion

constants of integration, Col. These outer expansion constants of integration

I are derived from the initial conditions of the planetary entry problem being

examined.

Blending ga Matching Exoansions. Applying the matching

Iprinciple, Eq (4.64), to the inner/outer and outer/inner expansions, Eqs

(4.66) and (4.71). for qo gives

K02 - (4.75)

Blending U0 Matching Expansions. Applying the matching

principle to the inner/outer and outer/inner expansions, Eqs (4.65) and

1(4.70), for uo gives

U ~C01 -K 01K02 ex4- Cos'(Ko)

ISolving for Ko1 gives

KU KI - (2 - CO IC.2) ex4Z Cos- (Ko2)] (4.76)

Blending gb Matching Expansions. Applying the matching

5 1principle to the inner/outer and outer/inner expansions, Eqs (4.69) and

(4.73), for cE gives

Sin _ C ol,C os S n- sin [ (10)i1 1
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I 3 Using the matching principle and Eq (4.67), C03 -I 1)o1i- [( 1.)i I.

Substituting this in the above relation and solving for K03 gives

K03 - Si-' [sin(Co3) si{Sinl. I- C Co5  (.77)I [ ,"41 - Co1 Co2) I I

3 Blending 10 Matching Exgansions. Applying the matching

principle to the inner/outer and outer/inner expansions, Eqs (4.67) and

3 (4.72), for Io gives

I C03 - COS1{cos(Ko 3 )cos [ in tan(- + COSI(K 02 )) + K05

I Solving for K05 gives

Kos - Cos-l L ,I - _ Intan( + COS--KO2 ) (4.78)

I Blending On Matching Exoansions. Applying the matching

5 principle to the inner/outer and outer/inner expansions, Eqs (4.68) and

(4.74), for Q0 gives

C0 " O-I(Ct a~ 0
C0  04 - os cos(K0 3 ))

3 Using the matching principle and Eq (4.69)

U Substituting this in the above relation and solving for K04 gives

I
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os ainll IV- "'Co
3 K04 = C04 + Cos- ( cos(K0 3) 4.79)

I
Zero Order e Solutions to the Equations of Motion

3The above derivations provide two separate, outer and inner,

expansions; each is valid in part of the altitude domain, but neither is valid

Iover the entire domain. Additionally, since the altitude where the inner

expansion is more accurate than the outer expansion is not precisely known,

Uwhere to switch from the outer, gravity dominated, expansion to the inner,

3air drag dominated, expansion is a not known. To generate an expansion or

solution valid over the entire domain, the inner and outer expansions are

3 blended to form a composite expansion. Using this composite expansion

negates the requirement to switch from the outer to inner expansions, at an

Iambiguous altitude, to obtain the solution to the planetary entry problem.

The composite expansion for c° solutions is defined as (Nayfeh, 1981:277)

Yo] Y o+ Y o Y  o + Y (4.80)

3The outer/inner (or inner/outer) expansion above accounts for the

components common between the inner and outer expansions. Thus, in the

3altitude domain controlled by the outer expansion, the inner expansion is

negated by the outer/inner expansion and vice versa. The two possibilities

Iabove are equivalent as defined by the matching principle, Eq (4.64).

Throughout the composite expansions below, [Y] is used, unless otherwise
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I

noted, since it typically is a simpler and more compact expression than

3 .~u0 Composite Expansion. Applying the composite expansion

definition, Eq (4.80), to the outer, inner and inner/outer expansions, Eqs

1 (4.22), (4.54) and (4.65) respectively, for u0 gives

U h0 -- 0 y+ K01 (X~Be-h/e+K 02 )2 ex4[- 2Cos-'(Beh/e+K02 )1 (4.81)
I ~ U0 - C01 I +h N 0

where K01 and K02 are given by Eqs (4.76) and (4.75).

I ae Comoosite Expansion. Applying the composite expansion definition

3 to the outer, inner and outer/inner (here this expansion is simpler than the

inner/outer expansion) expansions, Eqs (4.23), (4.55) and (4.71)

3respectively, for qo gives

qo - + XB -h /e (4.82)

le Comgosite Expansion. Applying the composite expansion definition,
I to the outer, inner and inner/outer expansions, Eqs (4.24), (4.56) and (4.67)

respectively, for Io gives

0 Cos-I cos(K 03 )co In tan( + 2 +Ko (4.83)

3 where K02, K03 and K05 are given by Eqs (4.75), (4.77) and (4.78),

respectively.
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I
I n Comoosite Expansion. Applying the composite expansion definition

to the outer, inner and inner/outer expansions, Eqs (4.26), (4.58) and (4.69)

I respectively, for % gives

[ COj + - cin(K°3))
l-I+ h -1-I I- COIo Si Sin( 5  0 Sin 7Co1 [ (484

I 'r/ -i( C)CO C 2.1 1 C021oz

I O
I uIn+ h  -inI CO,

+ Sin -I  sin-'K l c3)

I1 -cos2(Ko3) cos' ( 0ntn Cos '(  -+ 2)n n '+ 1 ))+K J51V

where K02, K03 and K05 are given by Eqs (4.75), (4.77) and (4.78),

respectively.

I ¢ Composite Exoansion. Applying the composite expansion

3 definition to the outer, inner and inner/outer expansions, Eqs (4.25), (4.57)

and (4.68) respectively, for o gives

C Cos 1ICO Ko~J2 (4.85)I
K0 cos(K03)1 - K04 (.5

I[{sin 2(K,,3)

ICos 1  1 [cos2(K os{ In tan(!+Co5'(XBeh/e +KosC~s- 03o (o)CO N 2

cos(K03)
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where K02, K03, K04 and Kos are given by Eqs (4.75), (4.77), (4.79)

and (4.78), respectively.

First Order E Matchinj

In the following sections, Van Dyke's matching principle is applied to

the E inner and outer expansion solutions. The outer expansions will be

I rewritten in terms of the inner variable first, and then the inner expansions

will be rewritten in terms of the outer variable. Both composite expansions

will be expanded for e and their resulting e0 terms will be equated, resulting

in the inner expansion constants of integration being expressed in terms of

the outer expansion constants of integration.I
Inner Exoansion of the Outer Exoansion Solutions. In this section, the

*five outer expansion solutions are rewritten in terms of the inner variable

and expanded to obtain c0 terms.

Matching Exoansion for u1. From Eq (4.27), the el outer

I expansion solution for u is

I
Rewriting the outer variable, h, in terms of the inner variable, , uses

the definition h - c 4. Substituting this in the above equation gives

(u,)O .I+

Using the binomial expansion derived as Eq (C. 16) gives
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I -I-C+2C+O (3)-1+0(6)

Thus, the inner expansion of the el outer expansion solution for u is

U I Oui , Ci (4.86)

I Matching Expansion for q1 .. From Eq (4.28), the el outer

3 expansion solution for q is

( C 11 C 12 fI h(00 o. (JCO,(l + h) +, 3 .
S(2 - CoIC02(I h))2

3 Rewriting the outer variable, h, in terms of the inner variable, 4, uses

the definition h - c . Substituting this in the above equation gives

C1I

(2 - CoC0 2(1 + t))2

Using the binomial expansion derived as Eqs (C.9) and (C. 17) gives
1 I +'"0(c) an 4 6 I + ' o(,E)

. -2

( - coc 02(1 +, ))- ((2 - CoC 02) - CoC 0 2

I 
-3

k-0
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I (- l 1 (3/ l (2-Co'C 2 -3/2-k (-COC02 f

Ik-0 (kI)3

S-(2- C0 C02) - 2 +(C)

I Thus, the inner expansion of the F.1 outer expansion solution for q is

10 " )I - 3 (4.87)

(2- CoCo2) 2

U Matching Expansion for I. From Eq (4.29), the e I outer

3 expansion solution for I is

By inspection, since there is no dependence on h, the inner expansion

of the e1 outer expansion solution for I is

l(,,)o1,iC (4.88)

I Matching Expansion for 01. From Eq (4.30), the e1 outer

3 expansion solution for 0 is

By inspection, since there is no dependence on h, the inner expansion
I of the F. outer expansion solution for Q2 is

[(Q,) -01i-C (4.89)
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I Matching Expansion for a,.. From Eq (4.31), the cI outer

expansion solution for a is

12 (o) C.I..fO oI+ COI1

(a,~~~2O) I - C01 1+ 20+h) -C 0 C02( +)2 CI

Rewriting the outer variable, h, in terms of the inner variable, 4, uses

the definition h - c 4. Substituting this in the above equation gives

0 + IE0- +C olII0° (C12 + CIc 024)Co,.40 . ) o( ,.,+ C ) CI2 5

3(a,)o (I -C012c0  2)+6 0  e)- CC02(1 + IC2'
I

Using the binomial expansion derived as Eq (C.17) gives

1+c -1+O(c) and

*
C( C 02  + 2( -CoC 02) .+ o, 02 +1.)) V

1
(2 -Co,(Co 2 ,+ " 0)

3 Thus, the inner expansion of the cI outer expansion solution for a is

I .,C12 (CO+ +o, ,i. )
Ia (, I o, )z -Co,2o , _+Ci (4.90)

I
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I
Outer Exoansion of the Inner Exoansion Solutions In this section, the

five inner expansion solutions are rewritten in terms of the outer variable

I and expanded to obtain d terms.

Matching Expansion for ul. From Eq (4.59), the el inner

expansion solution for u is

(,'- (NBe_1+ K. )2Zexp(- .Cos-'( N Be_ + K02 )

S{K,2KoI(KI2 + K02 K21) ( + ) - 2, Sin'(Be_ +K 2I, Be-  + K02 N 0

+ 2[KOIKI2 -K0 K 2 I (K02 -Be) 2K K1 K21

I +/- ( _-e +Ko2 )2 N J o2

U In 2-z\I( 1 KO22) I HNoBe- 4Ko 2) - 2KO2(?Be_ K02) +2])
I

Rewriting the inner variable, , in terms of the outer variable, h, uses

the definition - h/. Substituting this in the above equation gives

(u,)' - ((Be-h + K)2 exp,( Cos1(&Beh/"+ K02 ))

2Ko0 (K, 2 + Ko2 K,21) (R + 1) 2K-2 , K0 2

iBe-h/c + K02  N

4 1 (o G e -hh + K02 ) 2 !q1 - K026
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I + I4' \J( 1-K022) [ 1 -(Ne-h/g, 02) - 2K02,(XBe-h/ + K02) + 2)]I,
Since exp(-1/) decreases to zero rapidly as E-O, e-h/e - 0 (Nayfeh.

1981:260). Therefore

N Be-h/c + K02 - K02

Thus, the outer expansion of the el inner expansion solution for u is

I (u , )'J -K02 exp(- Cos-'(K 02 )) tK, +2Ko,(Ko- + K,2 ,)(+ 1)

1 2K K0 K KIi+ n (4 01-K02  ) (4.91)

Sin'(K02) +2 -7 d= 1K2 K12 1n XB )II(.1
3 MatchinE Expansion for a I. From Eq (4.60), the c inner

expansion solution for q is

(q,)'- K1,2, (KW - -Be) +,1

Rewriting the inner variable, , in terms of the outer variable, h, uses

the definition - h/e. Substituting this in the above equation gives

(q,)' - K12, (K02 t- B-h,) + K,2

Since exp(-l/I) decreases to zero rapidly as e-,0, e-h/e - 0 (Nayfeh,

1981:260). Therefore

N Be - h/- 0

I- Thus, the outer expansion of the e1 inner expansion solution for q is
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I

I Matching Expansion for I. From Eq (4.61), the el inner

3expansion solution ror I is

(11) - K 6 1- 1(Be- + K02)-

13 + " X ," B +K2)I~~ [K131KI32+ 134 (12E +i)I~a~ ( 2))

U + [KW2 CosI?Be. K02) [Cos-'(N\Ee- + K02)]2

Iq -K02
* [cos'(NBe- + K 2 I]

Rewriting the inner variable, t, in terms of the outer variable, h, uses

U the definition = hl. Substituting this in the above equation gives

I ~ ~~K1 K132- - h/ +

6 L X-(. e)
(11)' - K 13+XLqI- ( XBe-/ + K02 )2

I
+[K131K132+ K1 (!- K15)] i1Jtn(4+ + K02
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K [0Cos-'(NBe-h/e K02) [Cos-(NBeh/,+ K02

[Cos- (GBeWe + K02 )] I
Since exp(- 11/) decreases to zero rapidly as c-+0, e -h/e _ 0 (Nayteh,

I 1981:260). Therefore

Np Be - h/ + K02 - K02

Thus, the outer expansion of the el inner expansion solution for I is

I~~1 1,,i.,+ I,, ,- 02
• K ,K, 34, K,12 - K 1,)],oTr+C13 2

+ [K134 KID2 CSK134  -'K02) 12 n( Cos'(K02)1'(93

II +K,34[ L P !- -Ko 2  8[cs.o)]
I

Matching Expansion for a,. From Eq (4.63), the c inner

expansion solution for a is

(a,)i -K15 - Sin-'(XBe-4+ K 2)+ K

+ In 2 0(1K 02 2f I- (NBeC o2 )2] - 2KO ( XBeC K) + 2]
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Rewriting the inner variable, , in terms of the outer variable, h, uses

the definition - h/e. Substituting this in the above equation gives

+ In [2J(KO2 2 l -,(.Beh.,Ko,)2] -2Ko(NBe-h0+K) +2}

Since exp(-1 /0 decreases to zero rapidly as e-+O, -h/e - 0 (Nayfeh,

1981:260). Therefore

IX Be-h e + K02 - K02

Thus, the outer expansion of the el inner expansion solution for a is

Matching Exnansion for Q1. From Eq (4.62), the el inner

expansion solution for Q is

fK1  K132 - K2) K1

4! hk- K02 K 42 K133I (<),- 14
~~14 +(I - Be-4 + K02 )2  1Be-1 + K02

*K,3lta1~--~1T cos1(?Be- K02)i+ K143 1 tan [14 Ir

+ (K132 K142 + K144 -12 K15)) [4 In ( Be1. K02) (&Be( +K02

3 6
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K02 K144 COS- ' ( BC- + KI2 )
1 -K 0 22

+K145 [cos1(NBe- + K02)]3 3[Cos'1(NBe- + K02 )]

6 40

+ K146 [CosI ( XB- + K)] 2  [Cos-i ( NBe- + K02

Rewriting the inner variable, , in terms of the outer variable, h, uses

the definition { - h/c. Substituting this in the above equation givesI rK
K 41 K 12 -Ite-h/e +02 K142 K133

(01' - K L4 + 1 - ( ,Be-h/e + K0
2 ) 2 ,Be-h/e + K02

+ K143 l tan -+ 2

( . KI32KI42+K144 (2 - K, 1)4 In( Beh/ + K02 ) ,Be-h/+ 02 )]
3 6

I K02 K144 Cos-(I ?Be-h/G + K02 )

lK022

+ K45 [co(NBe + K02 ))3 3[Co&1 (hBeh/c + K02

40

+ K146 [Cos (Be + K02)? [Cosl(XBe h/e .K02

* 2 8
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I
Since exp(-1/ ) decreases to zero rapidly as e-40, e- h/e - 0 (Nayfeh,

1981:260). Therefore

X Be - h/ e + K02 - K02I 1
Thus, the outer expansion of the el inner expansion solution for 0 is

I K141 13 - W
- 14 +K02+ l 2 K02

I+K 4  ntan(TT Cost I(K0 2))]

U + (K132KI42+KI44(1T- K15)14 l K02 -

3 61
I

K02 K144 COS-'(W02)1 -K0 22

K145 [ICos-' ( Ko2) ] 3 3[Cos-(Ko
2)]51

K 146 [Cosl(K 02 )' + [COS8 02

* 2 81
IMatching First Order e Solutions, Van Dyke's matching principle is

now used to correlate the inner/outer expansions and outer/inner

expansions. From Eq (4.64) the matching principle states, where Y is an

arbitrary expansion

[(Y)o]-.[(Y),]o
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I
Thus, the inner/outer expansions and outer/inner expansions derived

above are equated, resulting in the original inner expansion constants of

I integration, K I, being expressed in terms of the original outer expansion

constants of integration, Cj1. These outer expansion constants of integration

are derived from the initial conditions of the planetary entry problem being

examined.

.ending Matching Exoansions. Applying the matching

principle, Eq (4.64), to the inner/outer and outer/inner expansions, Eqs

(4.87) and (4.92), fur q, gives

3 - K121K02  + K12

I (2 -C

I Solving for K12 gives

.Bl. nding. Matching Exoansions. Applying the matching

principle to the inner/outer and outer/inner expansions, Eqs (4.86) and

C, I - Ko2 exp 2 'Cos- (K02 El1 + 2Ko, (K02+ K121 R + 1)(4.1) for) givesI2
1 1 o2 ep~Cs( 02))~ 1 1
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I Solving for K gives

K. KI2, + I + Sin-(K

KC 2K K02 02)

Kl - K 2I2KOIK°2 [K(40I-K°22)497

Blnding , Matching Exoansions. Applying the matching

principle to the inner/outer and outer/inner expansions, Eqs (4.90) and

(4.94), for a, gives

ICl2 (Col + 1) + C1 (C0,C02 - l)

0 ,- CO 2 C02 )42lCo1( I  + C15 K15 - Sin-(K 0 2 )

+* +A fe In [4 ( 1K 2
2)]

I Solving for K,5 gives

I C12 (Co, + 1)+ tCL (CoC 0 2 - 1)
K15 -Cis+ (I -c 0 2C02 )-C C 0 ,c 0 2 l + Sin-l(K0 2 )

I I nK [0 (1K (4.98)

l.jding. I Matching Expansions. Applying the matching

I principle to the inr-r/outer and outer/inner expansions, Eqs (4.88) and

(4.93), for I gives
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I K,32 -

K13  02
1 - K02

+[K1 3 jKJ32 +K134 12- Kj5) In tan( + 1o-(K2TT rrCos-l(K02))

+ K134 [o K2) Cos'(Ko2)12 - [Cos-'(K 02)1]I ~~ _K" K0-2o2 2 8

Solving for K13 gives

{K 1 31 K, 32 - K03 )

K13 "C13-1 K02

+ [1 _ Ko22

+ K 31KI32 + 134 (121 - K 15)] 14tan( 4 Cod 2 )

+ 4 K ) [Cos(K 2 )J s (4.99)

BlK1 d ng3 C24 Matching Expansion& Applying the matching

principle to the inner/outer and outer/inner expansions, Eqs (4.89) and

(4.95), tor Q gives

KI4 K132 -C,4 ,4 0 + L2K3

C4 - K14 + XI1- K0 2 2 K02

3 tan(T + Cos 1 (K02)+ K14 3 14 2a

I 75



I

I+ (K 132K 142+K 144(~1 K 15)) [02,. + K02 K-4 CJO.~ S &K)

+ K [[Cos-'(K02)] 3[Cos-l(Ko2)JS]14 "6 L- + -40

+ K146 [Cos-'(Ko02 ' [Cosl'(K 2)1l

I Solving for K14 gives

14K 1 2
"+- K02

I+ K 143 1 ta( + Cos-'K02))

+ (K132K14241 44(12 - K ,5)) K02 - 144 Cos-'K

I+ K145 [[Cos-'(K2) 1 3[Cos1'(KO2)JS'

+ K146 [[Cos-(K 0 2)]2  8 Cs'(K02) (4.100)
2 8

IFirst Order c Solutions to the Equations of Motioi

As in the derivation of c0 solutions to the equations of motion, the

3composite expansion or solution is used to blend the distinct, but
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overlapping, outer and inner expansions to give an expansion valid over the

entire altitude domain. The composite expansion for el solutions is defined

I as (Nayfeh, 1981:277)

Y Y+*Y- [Y Yi + YO - [ Y] (4.101)

Also, as in the c0 derivation, [YOT is used, unless otherwise noted,

since it typically is a simpler and more compact expression than [Yi] °

I ulq Composite Exoansion. Applying the composite expansion

definition, Eq (4.80), to the outer, inner and inner/outer expansions, Eqs

(4.27), (4.59) and (4.86) respectively, for uI gives

IC h- ( he '2 (1 _-( h/e+Vi
ul "-CIl-h +  +Be K02) exp(- Cos-I(Be + K0o2)

2K01 (K12 + K02K121) (+I) 2 1 K0 Sn Behe )IX KII + ) . K 2 10 i - ~ -/ + 0

1NBe-h/c+Ko2 N

2 K IK o 12 -K0, K121  K h

N 02 N-  2K K K

i I (1-KO22) I [(Be-h/+K)212K (NBe K2e (4.102)

NBe-h/c

where Ko . K02, K12 and Kt21 are given by Eqs (4.76), (4.75), (4.96)

and (E.26), respectively.

I

I



-1 Comgosite Expansion. Applying the composite expansion definition

to the outer, inner and outer/inner (here this expansion is simpler than the

inner/outer expansion) expansions, Eqs (4.28), (4.60) and (4.92)

respectively, for qt gives

[O+) c 12 +,i T
q O 3 - N\Beh/E (4.103)

(2 - CoC 02( + h)) 2

1, Comoosite Exoansion. Applying the composite expansion definition,

to the outer, inner and inner/outer expansions, Eqs (4.29), (4.6 1) and (4.88)

respectively, for 1, gives

K131 K132 ",e )K 3
I 1  ( Beh/ + K02

11 hK3/e-/

+ +[K 13, K132 -K134 (!!-K 15)] 14tan(11 os ( eh/+ 0

~~IK2s-(?XBe-h/e +K02 ) [CoslI(hBe-h/e + K02 )]2

+ K134 [0Co2

U[Cos-1(hBe-h/c+ K02 )]4]j

8 (4.104)

where K02, K15, K131, K132, K133, and K134 are given by Eqs (4.75),

(4.98) and (E.30), respectively.
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_.l Composite Expansion. Applying the composite expansion definition

to the outer, inner and inner/outer expansions, Eqs (4.31), (4.63) and (4.90)

respectively, for a, gives

I(C 2 + C C 0 2 \jO.)0+h - + COIC12 j

(' --,co)Io +2(1+h)C( h -+ K 15( 1 - Co.Co2) WCo 
I + 2(~)- CO IC02(l +h)2

_ Sin-I( 
Be-h/e 

+ K02 ) +  
K02

i 
-4 1,-Ko 2

Inj 2 J(1-K0 22 -(?Beh + K02 )2 -2 02 (?Be-h/e +K02)+ 21
L NBe -h/e

C12 (CO + I) +7 t (CoIC 02 -1(

(1C 0 1 C02 ) 2-Co(C 02 +1) (4.105)

where K02 and K1S are given by Eqs (4.75) and (4.98).

,jl Composite Expansion. Applying the composite expansion

definition to the outer, inner and inner/outer expansions, Eqs (4.30), (4.62)

and (4.89) respectively, for 01 gives

01 K 14 +  N V i~e-' O + 02 + Be h + K 0

I
I 
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I
K 4 lhtan( + Cs (eh/K02,

1431 2 [ ln( B e h +K0  ( B -h/ e+

K02 K 144 COS-I Be -h/ e + K02 )

1F - K02 2

+ K145 [[Cos- ( XBe" /eK 02 )] 3 3[Cos-1( N Be-h/e+ K02 )• 6 40J

+ K 4 6 [L's Xeh/K021'' [Os ?(Be-h/+K 02 ] (416
2 +8

where K02. K14 , K142, K143, K144, K145, and K146 are given by Eqs

(4.75) and (E.32).

Eguations of Motion

Once the composite expansions for the five dependent variables (u, q.

1, 1 and ) are determined, the approximate, analytical solution to the five

equations of motion are given as

*c U u()C+O(€2)

CO _L {-o + K01 ( Be-h/#-+KQ)2 ex4- Cos-' NBe-h/'E+K0)2J
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f-CjjIyIjh+ (NBehe K02 )2 ( Xs(Beh/e + K02)

I x1KI+~2KoI(K+KO2K~I2) h +)-2Knlieh.K )

N + K01K12 - K01 K121 1 (K02  N-?sBeh 2K0 2 K0, K121

F ~-h + K02 ) 2 N1l- K022

[2 (1 -K0 22 ) [1 (Bebh/,o 2)2 1-2K012( XBe-h/e.KO2 )
XlrI[ NlBeh/eJJ

+0O(c)2 (4.107)

~c C(Cl)+0(,2)

Io I X e - /e
O I [ 0C020 h) - z+Be/1

U+ C1241T ) }
:co( +h)3- N~-/ ~ (4.108)

I(2- C0 C02u+ h))2

TCos 1I (Beh/e Ks

-Cos'tcos(Ko 3 )COJ In ta 4 2 K2  J ]
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+ ~ L1( Beh/e+ K)

+ r 1 + V ( N e- h +1 K(02 o' ( B e

+ [K131KI32 + K134 (n K15)] Iltan 1T o-Ie- +2

K02 CO-1(eheK2 [Cos-1(GBe-h/c +K02 )2

K134 [2o1 (eh~+K 2
l-K2

[ Cos I( NBe 8h/c K02 )]]11c + 0(e2)(419

Si- SQLn- 1) ( Si n-( I) I - ll
- jr [ _ -C012C04 + ilsin(io V1 -ic 1 2c0 J

If(C 12 + C11IC02\IC, )1+h) - LL+ COIC 12)

U ~ ~ 1(i ~CO C 2)V 14i) -C01C02(1+h) 2 +K1

-Sin( NBe-h/c +K02 ) + K0

I xi{ 2(KO 22)j (NBe-hle+K 02 )2]_2 KO2(?Be-h/e+Ko2 )+z
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I

!12 (COI + q (C 0 ¢C02 -1) 2

I ( I c 0 2 2 2 C (CO,2 + 1) J(41
I

- K04 - CO-I( ICI 0

2cos(Ko3))K

I ~~~~~K,4an- K132 Cs(ehK3)

+ ( K14 2+ 4 x- ,) 4 I n (Be h /e+K02 ) (Be h/,e + K02 )2

I ~~~+ K tan5 [Cos- (Beh/+K0 2 )3Cs ?BheK)I m+ (KI32KI42"KI44('K")) [4 
In ( h1 -h /e K 0 2 )3  (hBe-h/c+402 26

I 145 [ 6 ,+40

I+ ii46 [ [Cos-1 (h]Be-h/+K 02 )]2 [Cos- (hBe-h/e+K0 2 )]4

I
K02 Ki 44 CoS.1(hBe-h/' + Ko2 C ,1  0(e 2 ) (4. 1 )

' 1 - K02 
2

I
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where the inner expansion constants K01-Kos are given in Eqs (4.75)-(4.79)

and KI-K15 are given in Eqs (4.96)-(4.100).

The above set of five equations form an approximate, analytical

solution to the set of five, coupled, first order, non-linear ODEs (Eqs (4.1)-

(4.5)) that describe the trajectory of a vehicle entering a non-rotating

planetary atmosphere. This solution set is first order accurate with respect

to the small perturbation par.meter 1/or., which is approximately 1/900

for earth entry. Since a solution is defined as Y - Yo + YI' O(e ) and the

orders of Yo and Y, are similar by definition, addition of the first order

solution Yle increases the accuracy of the solution by three orders of

magnitude.

Eqs (4.107)-(4.111) are relatively simple and accurate analytical

solutions to the complex physical system of atmospheric entry. They

provide a readily available analysis which retains the subtleties of the

K original system. It is this characteristic of analytical solutions which makes

3 them more favorable than obtaining solutions using numerical analyses.

I
I
I

I
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V. Validity of the Solutions to the Equations of Motion and

Comparison to Numerical Solutions

In Section IV, analytical solutions are derived solving the set of five,

coupled, first order, non-linear ODEs that describe the trajectory of a

vehicle entering a non-rotating planetary atmosphere. These solutions,

given as Eqs (4.107)-(4.111), are first order accurate to the small

perturbation parameter 1 /or., which is approximately 1/900 for earth

entry. They provide a relatively simple and accurate solution to the

complex, non-linear physical phenomena of atmospheric entry, retaining the

trends and subtleties that are lost in an analysis using numerical methods.

Comparison of Analytical and Numerical Results

To demonstrate the first order accurate analytical solution derived in

I Section IV (Eqs (4.106)-(4.111)), the differential equations of motion (Eqs

(4.1)-(4.5)) are numerically integrated and compared to the results from the

derived analytical solutions for the same set of initial conditions.

Numerical Aooroach. To numerically integrate the five equations of

motions derived in Section III (Eqs (3.60)-(3.64)), a fourth-order predictor-

corrector integrating algorithm is used (Wiesel, 1989:119-123). The

Iintegrating step, Ah, is decreased and the equations of motion are

repeatedly integrated until the resulting data from the above integration

Iremains unchanged. The numerical integrator given by Wiesel assumes an
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I
independent variable that is monotonically increasing or decreasing. For

this study, the non-dimensional altitude h is the independent variable, but it

I is not monotonically decreasing, since the skipping of the re-entry vehicle

results in a local oscillation in altitude. Thus, the numerical integrator is

slightly modified to account for this altitude oscillation by changing the sign

3 of the altitude increment based on the sign of the flight path angle.(Ah > 0 if

y > 0 and Ah < 0 if y < 0)

Solution Comparison. To compare the analytical and numerical

3 techniques to solve the differential equations of motion, the initial conditions

for an Apollo-type reentry vehicle are used (Hilije, 1969:2-10). Figures Fl -

I F5 (Appendix F) show that the analytical solution give very accurate

solutions to the equations of motion. The advantage of having a first order

accurate solution is evident in the increased solution accuracy around skip

If points, where the flight path angle changes sign, and at low altitudes, where

aerodynamic forces dominate.

I Derivation Assumotions

To derive analytical solutions to the five ODE equations of motion,

3 Eqs (4.1)-(4.5), several assumptions or approximations were made to arrive

at analytical solutions. The first approximations used were introduced

I when the small perturbation expansions for sin(a+ be + ce2 +O( 3 )) and

cos(a + be + ce2 +O(e3 )) were performed. Although the results of the

expansions were not exact, they were correct to order 2 . Since the final

solutions were order 0 and d1 , this assumption does not effect the zero and
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I
first order solutions. This conclusion is also applicable to the binomial

expansions used in initial expansion of the equations of motion and the zero

I and first order matching expansions.

The next approximation used was to determine the small perturbation

expansion for tan(a + be + cc2 +0( 3)). Although the expansion is correct to

order E , like the sine and cosine expansions above, it assumed tan(a)t

I /tan(bc + ccz + O(C3)). Since b and c - 0(1) and e - 0(0.001), this is a valid

I assumption for most common orbits. The exceptions to this inequality are

discussed in the next section.

The remaining assumptions used during the derivation of the zero

and first order solutions were made to solve the first order, inner

expansions. Through numerical analysis, the only significant approximation

3 made was in deriving the q, inner solution, where

NB +K02 )ex4[ o-(&c K 1

;( Be- - K-Cos- (0Be- 2] d

I2
f f( NBe + K02 )ex4 jFCos'(Ko2 ]d 51

Since a 'q1 ' term is present in all of the first order ODEs, the error

induced by this approximation is present in all of the first order solutions.

3 This is reflected in Figures E3-E6.

I
Solution Validity and RestrictionsI

Even before the above assumptions and approximations were used,

the solutions to the five equations of motion were restricted due to
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singularities found in the ODEs. These singularities were present in every

ODE except dq/dh and involved terms of sec(y), csc(y) and csc(]). Thus,

I the solutions to the ODEs, whether numerical or analytical, become

numerically unstable at extremely shallow flight path angles, Iyl 't V or at

extremely steep flight path angles, y ,- -90". The latter entry trajectory is

I not realistic since it results in enormous aerodynamic heating and

decelerating forces. The solutions also encounter instabilities when the

entry body is in the equatorial plane, I - 0 °.

In using the small perturbation expansions for the tangent of I and y,

the approximations impose restrictions on the validity of the derived

analytical solutions. As mentioned above, the expansions assumed tan(1) €

l/tan(I Ic+ 12+ 0(C3)) and tan(y) c l/tan(ylc + y2 + 0(E3)). The

assumptions become invalid when O(tan(I)) - O(l/tan(le + 12C2 + 0( 3 ))) or

O(tan(y)) - O( 1/tan(y + + O(c3))). For earth re-entry, where c -

I 1/900, the above assumptions break down when 85 1 III (or IyI) 95" For

martian re-entry, where the mean planetary radius is smaller than the

earth's and the atmosphere is thinner than earth's (e - 1/350 (Vinh and

others, 1980:5)), the above assumptions break down when 80' III (or IyI)

90". Thus, the approximate solutions become invalid at extremely steep

I entry trajectories or near polar orbits.

The assumption given as Eq (5.1) was used to facilitate the first

order, inner solution for qI. The approximation ,Be -  - 0 was found

accurate until the entry vehicle penetrated the lowest regions of the

atmosphere, when the approximation slightly underestimated the changes

in qI, since as -+0, e" - 1. Since this approximation is carried forward to

the first order, inner expansion ODEs for I1, 0, and a,, in the form of the q,

terms present in each of the ODEs, this underestimation trend is present in
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I
all or the above solutions, as shown in Figures E4-E6. The induced errors

occur at very low altitudes, where terminal course corrections, such as

I lift/drag modulation, are performed. But lift/drag modulation entails

changing the lift/drag coefficient, which was assumed constant for this

study. Thus, the errors induced by the above approximation are de-

emphasized.

9
I
I
I
U
I
I
I
I
I
I
I
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I

UVI. Conclusions and Recommendations
I

IConclusions

I Using the Method of Matched Asymptotic Expansions, this study

developed first order accurate, analytical solutions (Eqs (4.107)-(4.111)) to

the five, coupled, non-linear equations of motion describing three-

dimensional, planetary atmospheric entry. A non-rotating planet and

atmosphere were assumed, as well as a constant lift-to-drag ratio and

ballistic coefficient. The validity of the developed solutions are coordinate

dependent since singularities are present in the original equations of motion.

As a result of this study, the following conclusions are made

1. A computerized, symbolic, algebraic manipulator greatly reduced

the workload in generating the zero and first order asymptotic

I expansions. Application of a similar program could be used in

generating similar expansions for any arbitrary set of differential

equations.

2. Exact solutions were found for both of the zero order, outer and

inner asymptotic expansions and the first order outer asymptotic

I expansions. To derive analytical solutions for the first order inner

asymptotic expansions, approximations were used resulting in

underestimation of the aerodynamic turning at low altitudes. This

inaccuracy becomes evident at low altitudes where terminal

maneuvers are initiated.

I
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I

RecommendationsI
Based on the analysis of the assumptions and the results of this study,

I the following recommendations for further study are proposed.

1. Using Mathematica m greatly reduced the workload of finding the

outer and inner asymptotic expansions to the equations of motion.

3 Development of a generalized version of the Mathematica '

program used in this study would result in a program generating

I the nth order asymptotic expansions for any arbitrary differential

i equation.

2. Due to approximations in small perturbations expansions, the

application of this study is not valid for entry trajectories near

polar orbits. A different set of coordinate transformations and

subsequent expansions should be applied to extend the domain of

solutions near this orbital state.

3. Due to approximations in the first order, inner expansion solution

for q, the flight path angle, the solutions found in this study

become inaccurate for low vehicle altitudes. Further investigation

3 should be undertaken to find either exact solutions to the first

order, inner expansion ODEs or better approximitions which

Iwould increase the accuracy of the analytical solutions at low

3 altitudes.

I
I
I
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I Appendix A:

Transformation of Planetocentric Coordinates to Orbital

Elements Using Spherical Trigonometry

This appendix derives the relations between the planetocentric

3 angles from the equations of motion(O, € and ) and the classical orbital

elements (a, Q and 1). Since this study models the planet as a sphere (Vinh

I and others, 1980:2), spherical trigonometry is used to derive relationships

between the planetocentric angles and the orbital elements (Bain, 1989).

Figure A 1 shows the relationship between the two related variable

sets in an osculating orbit (Vinh and others, 1980:257). For clarity, Figure

A2 shows the pertinent variables as a spherical triangle formed by the arcs

5of three great circles on the surface of a sphere (planet). By definition, the

interior angles are angles between the curved line segments and the

exterior angles are the angles between the linear segments emanating from

the origin, point 0. The following is a list of the interior and exterior angles

used in the subsequent derivation.I
Exterior Angles* a - e - Q b - c - a

I Interior Angles. A - r/2 - B - I C - r/2

To relate the above two variable sets, the two fundamental formulas

of spherical trigonometry, the law of sines and the law of cosines, are used

(Fitzpatrick, 1970:118-120). While the law of sines relates the ratios of

I interior and opposing exterior angles, the law of cosines relates the cosine of
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Figure A 1. Reference Coordinate System and Orbital

Elements

Ian interior angle as the sum of the products of the cosines of the other two

interior angles and the products of the sines of the other two interior angles

with the cosine of the opposing exterior angle.

sin(a) sin(b) sin(c)

Law of Sines: sin(A) ' sin(B) ' sin(C) (A.1)

Law of Cosines: cos(a) - cos(b) cos(c) + sin(b) sin(c) cos(A) (A.2)

I To derive the three spherical trigonometric relationships, known

values are first substituted into the law of sines

sin(e - Q) sin(k) sin(a)

sin(Tr/2 - 4) = sin(1) = sin(Tr/2) (A.3)

I
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I C

I
I

I Figure A2. Spherical Triangle Relating
Planetocentric Angles to Orbital Elements

Since sin(Tr/2 - ) - cos(4) and sin(Tr/2) - 1, two relations arise from

Eq (A.3) and making use of the common trigonometric relationship,

I sin 2(x) +cos 2 (x) _ 1:

sin(a) - sin(I) or cos2(a) - 1 I (A.4)sin() osin (1)

sin(O - 0) - sin(*) cos( ) sin2() (A.5)sin~l)sin2(l)

I
Using the law of cosines gives the first relationship as

cos(a)- cos(e - Q) cos()+ sin(e - 0) sin(4) cos(lr/2) or

I cos(a)- cos(e - Q) cos(C) (A.6)

I
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Squaring (A.6) and substituting Eqs (A.4) and (A.5) into (A.6) gives

1Is ) ( sin 2 ( l
) 

cos2( c  2
sin( -i ) cos()

Simplifying the above expression gives the second relationship:

cos(I) - ±cos(4i) cos(C) (A.7)I
To derive the third relationship, Eq (A.3) also gives

sin(6 - Q) - sin(I) (A.8)cssin(p

I
But from Eq (A.7)I cos(lI)

cos( ) - cos(O) (A-9)
cos(4)

Substituting Eq (A.9) into Eq (A.8) gives the third relationship:

Isin(0- 0) tan(4) (A.10)
tan(D)

Thus Eqs (A.6), (A.7) and (A. 10) give the three spherical

I trigonometric relationships required to transform the planetocentric angles

to classical orbital elements. For these equations to be useful, they will be

reformed to match the equations of motion Eqs (3.46)-(3.50). Eq (A.4) is

3 already in the correct format. Repeating Eq (A.6)

cos(c)

3 But from the law of cosines
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- cos(O - Q) - cos(C) cos(a) + sin(C) sin(a) cos(rr/2 -

3 - cos(4) cos(a) + sin(4) sin(a) sin( ) (A.12)

3 Equating Eqs (A.I 1) and (A.12) and simplifying gives

cos(a) sin(I)sin(C) - cos( ) (.3

3 Substituting Eq (A.4) into Eq (A. 13) gives

sinG) - tan(a) (A.14)i sin ) -tan(a)

3 Again taking the law of cosines

cos(rr/2 - )- cos(I) cos(Tr/2) + sin(I) sin(rr/2) cos(e - 0) or

sin(4) - sin(I) cos(0 - Q) (A.15)

To summarize, the three transformation relationships between

I planetocentric angles (€, ¢ and 0) and classical orbital elements (a, 0 and I)

are:

sin( ) - sin(a) sin(I,) (A.4)

cos(I) - cos( ) cos(¢) (A.7)

sin(i ) - sin(I) cos(O - Q) (A. 15)

I
I
I
1 96

I



Appendix B:
Mathematicam Code to Generate Zero. First. and Second Order

Asymptotic Exp~ansions

1 This appendix lists the Mathematics' code used to generate the zero,

3 first and second order outer and inner expansions to the five equations of

motionI

Program Structure

The Mathematicam program is structured to input a matrix whose

Ifirst column is composed of the number of ODEs, followed by the ODEs

themselves. The program substitutes the small perturbation expansions for

I the dependent variables, Eq (4.6) and also for trigonometric and algebraic

functions of the dependent variables. For the outer expansions, the program

multiplies out all of the terms composed of sums of constant coefficients and

3 powers of e. The program then combines the coefficients of c0, and J.

The c0 terms are the zero order outer expansion ODEs, el terms are the first

3order outer expansion ODEs and J terms are the second order outer

expansion ODEs. To perform the inner expansions, the independent

1variable h is changed to the magnified variable by the stretching

I transformation h - e. The program then multiplies and collects terms as

in the outer expansions just completed. The c0 terms are the zero order

I
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3 inner expansion ODEs, 61 terms are the first order inner expansion ODEs

and e2 terms are the second order inner expansion ODEs.

I The core of the program is the sequence which multiplies out the

small perturbation expansions of the dependent and independent variables

and collects coefficients of powers of c. These steps are executed by the

3 Mathematical functions Expandil and Coefficient[]. Expand[) writes the

products of Polynomials, in powers of e, as a simple sum of terms of

l constants coefficients and powers of e with all products expanded out.

Coefficient[i collects coefficients of a prescribed power of 6 from the the

above sum of terms (Wolfram, 1988:381-384).

I Program Listing

Expansions:: usage - "This Mathematica function gives the zero, first
and second outer and inner asymptotic expansions for a set of first
order differential equations of motion (EOM). The EOM are
inputted via a matrix called 'ode'. ode([ 1,1 I] is the number of EOM
being expanded. odef[2,1 11, odef[3,1 ll, etc are the actual EOM. The
expansion parameter must be called e for the program to work."

I ExpansionslodeJ: -

("Defining small perturbation expansions needed for outer and inner
expansions *)

('Defining the small perturbation expansions for the dependent
variables in terms of the small parameter, e)

u - uO + ul'e + u2*'2Z;
q 0 + q*e + q2- e*e2;
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3i -10 +iWe + i2*e^2;
o -oO +o1'e + o2*e^2
a - aO +alWe + a2*e^2;

g - gO + gl'e + g2*e2;

(Defining the small perturbation expansion for trigonometric
functions *)

Sin IxO_ x I_-e_ + x2_'e-2) - Sin IxO] + x I Cos~xOJ'e + ((x2*Cos~xOI) -
(xl^2*sin(xO)/2))P&2 ;ICosixO_ xl_'e_+ x2_*e'j2l - CosixOl - xi'Sin~xOJ'e - (2Snx]+
(x I 2*cos(xO)/2))'2;3 TanIxO_ + x I_'e_ + x2....e21 - TanhxOl + (ulI/Cos~xOI'2)*e +

((x2fCoshx0I^2) + (x I Z2sin(xO )/cos(xO)'3) )*-2;

(Defining the small perturbation expansion for the reciprocal of

Sin IxO_ x I_-e_ x2_'e-^2^- I - 0l/SinxOJ) -

(x!"CosixOJ/SinlxOP^2)*e + ((x 1 2'( + CoshzO^Z)/2*SinixOI3) -

(x2'CostxOJ/SinhxO^2))'e2;
Cos ixO_ + x I_'e_ + x2-..e...2^- I - (1I/CoshxOl) +

(xl I SinhxO/CosxO)e + ((x1 ^2*( 1 + SinhxO]^2)/2'CoshxOI^3) +
(x2*SinxOI/CosxO^2 ))'^2 ;3Tan NO- + x I_-e_ + x2eZ-l - (I /TanhiO]) - U(I/Sin~x01^2)*e +

((xI ^2*CosixOI^2/Sinx0J^3) - (x2/Sin~xOP2 ))*e^2;

(Defining the small perturbation expansion for algebraic functions)3(xO-. + x I_-e_ + x2_'e_ 2^-1I - 0l/xO) - (zxI/x0^2)*e + ((x 12/x0'3) -

(x2/x0^2))'2;

(Defining the exponential of a large negative number is zero, or
* allowing the expansion to neglect exponentially small terms)

(E'(h/e))- 1 - 0;
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(Performing the outer expansions of the EOM)

3( (Multiplying out all the terms in the EOM *)
Dolodelli, 2)) - Expandiodelhi, 1iii, (0, 2, (1 + ode([ 1I. I JJIM3

(Grouping the coefficients of e raised to the 0,1 and 2 powers. The
zero order outer expansions are located in odeII2, 311-ode(16 ,311,
the first order outer expansions are located in ode[I2 .411-ode[I6,U 411, and the second order outer expansions are located in ode[12,
511-odelI6, 511.'*)

Dolodehi , 311 - Coefficientiodehi, .211, e, 01, 0i, 2, (1 + ode[[ 1,1 11))]

Dolodeti, .411 -Coefficientlodeli, .211, e, 11, 0i .2, (1 + odell 1, 1 11)1

Dolodelli .511 - Coefficientlodei, .211. e,. 21, , . 0( + odell 1 , 1 11)3~ 1=.;

3 ('Performing the inner expansions of the EOM, which transforms h
to z by the definition h - z'e)

(Multiplying out all the terms in the EOM)3 Dojodelli .211 - e'ode[(i, 111,i, 2, 0( + odeH I , I11M))

Implementing the definition relating h and the stretching variable z

h - z'e;

(Multiplying out all the terms in the EOM)
Dolodeli , 211 -Expand~odei, .2111, (i, . (1 + ode([ I , I 11))l
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I
(* Grouping the coefficients of e raised to the 0,1 and 2 powers. The

zero order inner expansions are located in ode[[2,611-ode[[6,611,
the first order inner expansions are located in ode[[2,611-ode[[6,
611, and the second order inner expansions are located in ode[[2,
611-odel[6,611. *)

Dolodeli, 611 - Coefficientiode[[i, 211, e, 01, i 2, ( 1 + ode[ 1 ,1 J))]

Dolodelli, 711 = Coefficient[ode[[i, 2J1, e, 11, i 2, (1 + odel 1 ,1 )11M)

Dolodelli, 811 - Coefficient[ode[ii, 211, e, 21, i, 2, (1 + odel 1, 1 11M))

I
U

IThe following listing is a sample input required to execute the above

program. It is same the five ODEs derived in Section IV and describe the

flight trajectory of a lifting body entering a planetary atmosphere.

I odeUl 111 5

ode[[2, 111- u/(l + h) - (2*b*u*(l + I*Tan[gl))/(E^(h/e)e*Sin[g])

odeiI3, 1] - -((b*l)/(E^(h/e)*e)-(q*(1 - q'2/u))/(l + h)
odei4, 111 1/((1 + h)*Tan[g]) - (bd*Sinlai)/(E^(h/e)*e*Cos[gl*Sin[gi*Tan~il)

I odel[5, I] - (b*d*Sinlal)/(E^(h/e)*e*Cos[g'*Sinlg*Sin[i])
odeIl6.111 - (b*d*Cosa])/(E^(h/e)*e*Cos[g]*Sin[g])

I

I

I
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Appendix C:

Derivation of Frequently Used Taylor Series and Binomial
Expansions

I This appendix derives many Taylor series and binomial expansions

I frequently used in this study.

I
Small Perturbation Expansions for Trigonometric FunctionsI

To expand the sine, cosine and tangent functions of small

perturbations (powers of ) into linear combinations of powers of the

3 perturbations, the small angle formulas for the above functions are needed.

The small perturbation here is c, where c t I

I Since cos (x) is defined as

I cos(x) - ' (-I) (x9P
n-O (2n)

I cos(ae)- I (ae 9 (ae)4

21 ' 4,

+2 I + 0(64) (C.1)

I I Since sin(x) is defined as

I.o (2n+l)l
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sin(ac)-- (ac )3 (ac)5
3! + 5!

I - a Ok 3  (C.2)

I Since tan(x) is defined as (Beyer, 1984:297) and (Gradshteyn and

3 Ryzhik, 1980:34-35), where B2k is the nth Bernoulli number

tan(x) 22k (2 21 1) 1 B2kI X2k- 1. +i!+ . ..I(2n+0 31 15!

a - (ac) 3 2(ac) 5

tan(ac) - ac~ + -15!

I - ac +0(3 ) (C.3)

I To derive the small perturbation expansions, angle-sum relations are

3 also needed.

cos(a + b) - cos(a) cos(b) - sin(a) sin(b) (C.4)

sin(a + b) - sin(a) cos(b) + cos(a) sin(b) (C.5)

I tan(a) tan(b)

I
In deriving the small perturbation expansions for sin(a + bc + cF2 ,dc 3)

I and cos(a + bc + cc2 + dc3 ), Eqs (C.4) and (C.5) are repeatedly used. The

following example illustrates this by deriving the expansion for

sin(a + b + cc 2 + dc3).

I sin(a + bc + cc2 + dc3 )

- sin(a) cos(be + cc2 + dc3) + cos(a) sin(be cc2 + de3)
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1

- sin(a) Icos(be)cos(ce2 + dd3 ) - sin(bc)sin(ce 2 + dE3 )j

3+ cos(a) Isin(be) cos(cE2 + dc3 ) + cos(be) sin(ce2 + dc3)i

1 sin(a) Icos (be)[cos(ce 2 ) cos(de3 ) - sin(cc2 ) sin(de3)I

- sin(be) Isin(ce2) cos(d63) + cos(cE2) sin(de3)1)

3+ cos(a) {sin(be) Icos(cc2 ) cos(le3) - sin(ce2 ) sin(dE3)]

+ cos (b)[sin(ce2) cos(de3) + cos(cc2) sin(dc3)I}1
Substituting in Eqs (C.1) and (C.2)

I sin(a + be + cez + dd3 ) - sin(a) + bcos(a)e

+cos(a) - bsne2 + 0(E3) (C.7)

Similarly, cos(a + be + ce2 + de3) becomes

I cos(a + be + cc2 + de3) - cos(a) - bsin(ak

csi(a) +b2cos(a))62 + MEc3) (C.8)

To derive the expressions for the reciprocals of the above

3relationships, binomial coefficients and Pochhammer symbols are used
(Andrews, 1985:10-11, 273). By definition, where (-n)0 - I and

U (-n)k - (-n) (-n + 1)...(-n + k - 1)

(+ .br n a-k bk -I - a-t b,
3 k-O k-O (C.9)

3 As an example to rind the reciprocal or a binomial series
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I
* 00

2 1...u. (-1) a-I A(be + ce + def
a+bEc 2 + d e 3  k-O

00

(-I 1 a(I'k) (be + CE2 + d 3

k0

00

(jk(be +CE2 + de3)

I b e +b c 2  0( 3) (C .O )a a2 a 3 - + ( ) cl0
I

Substituting Eqs (C.7) and (C.8) into (C.10) gives

(sin(a + be + cc2 + de3 ))-1

1 bcos(a) b2( . cos2(a)) ccos(a) C 32+E( .I.,,

3-sin(a) - sin 2 (a 2si () -in (a) E (~

(cos(a + be + ce2 + de3) -

I bsin(a) + I b2 + sin 2(a)) csin(a) 16 ~3 C 2
cos a) Cos2(a) / + 2cos (a) cos2(a),

To derive the small perturbation expansion ror tan(a + be + cE2 + d 3 ),

Eq (C.6) can be used repeatedly, with the assumption tan(a) tan(be + cc2 +

I de3) - 0 (alternatively, an(a) ( l/tan(be + cc2 + de3)). This assumption

3 worsens as a-,Ir/2 radians or as e increases. Due to this approximation,

Karasopoulos limited his study to 1 1 750 (Karasopoulos, 1988:6) To avoid

I
1 105

I



this approximation, Eq (C.7) is divided by Eq (C. 12), since tan(x) -

sin(x)/cos( ). 2 +d sin(a b + c 2  + dc3)

faE.C + be+cc+d cos(a +be + c 2 + de3)

3-[sin(a) + bcos(ake+ (ccos(a) - b~sin(a) )2]

I bsin(a), b2( I +sin2(a)) csin(a E2 21 (F3
[cos(a) cos'(a) 2cos'(a) +cos 2 a)

Simplifying and grouping terms of powers of e gives

Itan(a +be + c 2 + dE3)

b [b2 -sin(a) +123--Ian(a) + cos2(a) e +cos 3(a) + os2aJ c +O(e3) (C. 13)

To derive the reciprocal of the above expression, Eq (C.8) is divided

3 by Eq (C.1 1), since 1/tan(i) - cos(x)/sin(x).

bc+cc +d 3  1cos(a+ be + ce + dc3)
(ta~a+ e +ce +de3)- .sin(a +be +cc 2 + de3)

-[cos(a) - bcos(ake- (sin(a) + b2cos(a) )zE]

1 bcos(a) (b2( 1 + cos2(a)) -ccos(a)' .2] + 0(63)
X siin(a) sin2(a) e + sin3(a) sin2 ) J

Simplifying and grouping terms of powers of e gives

(tan(a + be cc2 + & -
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I

I b b2cos(a) c C2 2 +0(C3

tan(a) si 2 a sin 3(a) - Mt2AO)(.)4

I Small Perturbation Exiansions for Algebraic Functions

I This section derives many of the frequently used binomial expansions

used in the derivations in this study. Again binomial coefficients and

Pochhammer symbols are used and are defined in Eq (C.9).

* 00I T (-n) a-flk(be cc'+ F:
(a + b+Cc2 + de,) k.0 k

00

I k-O ( a(O-k)(be+cc' +det

kO

00

. (-1)=(n>k (be + cc 2 + del)k

a(n-k)k(k-0 (C.,15)I
For example, as shown above in Eq (C. 10), for n - I

1 1 (1)0 (be + cc2 + de3)0

(a + be + cc2 + de3)1  (Of) a1

(l)lAc + cc 2 + de3) 1 (l)2(be + cIE2 + dc3)2

I (P) aZ (21) a3  +0( )

I b+cc 2 +de 3 2(bccc2 + de 3)2 +0(3
"a a2  + 2a3

I
I
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1

"al ( , -C + o(e3) (C.16)
a - a +

As another example, as shown above in Eq (C.16), for n - 1/2

1 ()o (be +cc 2 + dE3)0

(a be+ ce2 + de3) Y%2 t_
(0c) a2

(be + c62 + d 3)1  2(be+cc de3)2

3 + + 0(E3)

(M) a2  (2!) a2

1 be+c 2 +d 3 3(be + ce2 +d 3)2
" 3 * 3

a2  2a 2  8a 2

II 3
1 b 36b 2  " +0( 3) (C.17)

a2 2a2  8a2 2a)

II
I
I
I
I
I
I
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I Appendix D:

Derivation of Solutions for Outer Expansions of the Equations
of Motion

I Methods of Solution

i The solutions to the two sets of five, coupled, first order, linear

nonhomogeneous ordinary differential equations (ODEs) found in this

appendix are derived below. Three methods are used to solve these

equations. The first method used is the Method of Separation of Variables,

where the ODE and its solution are given as (Beyer, 1984:315)

dX f= Jf(y) dy +J' f(x)dx- C (D.1)
di -f(y)

C is the constant of integration.

The second method used to solve ODEs found in this study is the

Method of Integrating Factors, where the ODE has the form

dx + P(x)y - Q(x) (D.2)

The integrating factor has the form

u -eifP(x) d' (D.3)

and the solution is given as (Beyer, 1984:3 15)

ye f(I) d. fQ(x)e ep() i+C or
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e JP(x) dx 
(D.41

The third and final method is a variation of the second method and is

known as Bernoulli's Equation (Beyer, 1984:315). The ODE is given as

d x p(x)y _ Q(x)y n  (D.5)

Again,the integrating factor has the form

X- e JP(x) dx (D.6)
I

and the solution is given, for n 1, as (Beyer, 1984:315)

y ( 1-)e (1-n)'P(x) dx -1-n)fQ(x) e (1-n)fp(x) xCo

n)fQ(x)e (1n)JP(x) dx + C -ny e (n)JP(x) d0

I
Although some of the ODEs are coupled, the coupling is avoided by

solving by ODEs in a judicious order. The du/dh ODE is solved first,

followed by the dq/dh ODE is second and finally the da/dh ODE is solved.

I The dI/dh and dM2/dh ODEs are independent of the other ODEs and are

solved in the order presented for consistency.

I Constants of Integration Notation

I
I
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I

As shown in Section IV, there are ten ODEs expanded from the

equations of motion. Accompanying the solution of each of these ODEs is a

I constant of integration. To simplify the bookkeeping involved in defining

all these constants, the following notation is used for the outer expansion

solutions:

3 The constant of integration is given as Ci, where i denotes the order

(Ei -- IO or El) of the solution and j denotes the variable associated with this

I constant.
variable

U
2 q
3 13 4 Q2
5 a

Thus Co, is the constant of integration for the variable uo and C, 4 is

the constant integration for the variable £21.I

I Outer Expansion c0 Terms

I The differential equations corresponding to the c0 equation of motion

terms were derived in Section IV and are repeated below:

duo. uO
dh - I + h (D.8)

dh I (D.9)

dh

I 0 (D. 1i)
dh

I
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1a (D .I12
dh (I + h) tan(y o)

dun/dh Eouation Solution. The Method of Separation of Variables

I solves Eq (D.8). Rearranging Eq (D.8) into form of Eq (D.1) gives

duo u. duo dh d u ddhl~ 31q fkdu+ dhd
I+'l h -o I- + h f + l- hdh ,Co

I Solving the above ODE gives

I ln(uo)+n( +h)-Co, or uo-I+-h

Solution: uo  1 h (D.13)

da/dh Eouation Solution. This ODE is solved by substituting the

solution of uo, Eq (D.13), into Eq (D.9). Thus, the ODE now becomes

dh u

I +o h (o

I 1 h

1o 3C0  %+Cot I + h

I The ODE now has the form of Bernoulli's equation Eq (D.5), where

IP(x) - I Q(x) - 1l 1fCo 1 -

I From Eq (D.6)

112

I



I
i- e jP(x) dxa e )ydh ln1+h

Thus, Eq (D.7) gives

U q-2e -21n(l + h)(2) e -21n(l h)dh- C0 2 or

1 2  dh1 0

(q00+ h )2-Cl(1 + h)2d-C0

3 Integrating the right hand side of the above equation gives

I__ 2 -C
3m (qo0 + h)) 2  Co1(I + h)-0

5 Solving for q0 gives the desired solution.

Solution: q0  q - -2

Cot; + h) - C00+ h?)
Corj

CQ1C0 21 2 (D.14)

I d/dh Eauation Solution. The solution to this ODE (Eq (D.10)) is

trivial.

Solution: 10 - C03  (D.15)

df.dhEquation Solution. The solution to this ODE (Eq (D.A 1)) is

3 trivial.

'Solution: f = C04  (D.16)

I
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dIg /dh Eouation Solution. This ODE is solved by first rewriting the

term tan(y o) in Eq (D.12) in terms of qo, where, by definition, qo - cos(yo).
I 1 1) - 1 l(p

tan (y0o) -sin -cos_(y_) \ q0_ _1

cos(Y°) cos(Y0 ) q0

I But from Eq (D.14)

1 2 1+h)h2
2 1 "Co h)- C02(1 +h)

Substituting the above two relations into the ODE, Eq (D. 12) gives

dh - F(1+h) q2_
C1 +h)- C0 2(1 h) 2 - I

3The Method of Separation of Variables is used to solve this ODE.

From Eq (D.A), the solution has the form

d% -f 1 )q2 dh +Cos
0 l;1+ h)-C02"(+ h)2 _ I

I The above integral has the following form and solution (Beyer,

1984:257),.where I - 1 + h, di - dh, a - -1, b - 2/C01 and c - -C02.

{ 1 2 cx - I#Sin- I( i 2acJ + C

3From the definition of h (Eq (3.22)), h 1 0, therefore I1 + hi - I + h.

Using this relation and substituting the above relation into the ODE gives

Ithe solution

114

I



S2(10 h) 1

ao - r in[ COh , - + Cos

±h)z 4C02j
I

Simplifying the above equation gives

I Solution: a0 - Sin "1  _ I0,h +C0 Co (D. 17)

I
3 Outer Expansion cI Terms

I The differential equations corresponding to the e1 equation of motion

terms were derived in Section IV and are repeated below:

3 du

Ad h ( "l + hI d

I dh (D.20)

dh" 0 (D.21)

I -

dh - (I + h) sin2 (yo) (D.22)

I Au,/dh Equation Solution. The Method of Separation of Variables

I solves Eq (D.18).
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3 Solution: u1 - (D.23)I +h

A.1 /dh Equation Solution. Rearranging Eq (D.19) gives the ODE a

3form solved by using an integration factor.

9A( I3qoI q3 u
dh I+h I -  Uo 'u0 (1 +h)

I Substituting known relationships for uo (Eq (D.13)), q0 (Eq (D,14))

Iand u, (Eq (D.23)) gives

d'1 + _ _1_ __1_ C 11

dh + h - C2-- "( + h-)) 2(il1

Cot2 C2O-- I + h) - C02(I + h)2)2 "

The ODE now has the form where an integrating factor is used to

3solve the ODE. From Eq(D.3)

1 3

Q(h) - - C13
Q Co) t c 1 (~I+ h) - C02(1 + h1)2)2

IFrom Eq (D.3)1OC0( h)1 _3 IeP(h) dh. eJ( -(l, h) (2-C01c0 2(I h

3

(2 (- C01C02(U + h)11 "+

I
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I Thus, Q(h)u - Q(h)e JP(h) dh gives

' ((2 _C02(1 + h))i

Q(h) eJp(h) d _I 1 4 +h
SCo z(c2  + h) - Co2(l h)2)2

CO -12 1 )C11

I Integrating the above equation gives

fQ(h) eJ P(h) dh o,(, - h)

1 Thus, Eq (DA) gives

~\ol 
3( +

Solution: q, " +_ (D.24)

(2- CoC 02(1 + h)) 2

IdI/dh Equation Solution. The solution to this ODE, Eq (D.20), is

5 trivial.

Solution: 11 - C1 3  (D.25)

va Q/dh Eguation Solution. The solution to this ODE, Eq (D.2 1), is

trivial.

I Solution: 0, w C14  (D.26)

I
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!ki/dh Eguation Solution. This ODE is solved by first rewriting the

term y1 in Eq (D.22) in terms of q I. From the assumed expansions for the

I outer variables (Eq (4.6)) and using the definition of q - cos(y)

* - o+q (-2)-CSY)-CSY (E2)

3 The small perturbation expansion for the cosine function, Eq (C.8). gives

Icos(y0 +1 =J + ( )-COS(y 0 ) - y~sin(y0 ) iE +0(c 2)

3 Equating the above two expressions gives

q0 -cos(y 0 ) (D.27)

Y1 Yi sin(yo) (D.28)

I Therefore, Eq (D.22) becomes

dh -(1 + h)sin3( yo)

INext, the sin 3(y0) term in the above equation is expressed in terms of qo,

where, by definition, qo cos(y0 ).

I i"'(-yo) -3 3
( cos2(-y0 ))Z ( .q02)2

I But from Eq (D.14)

I 0 - II+h C1 +h
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I

After combining the above two equations and simplifying, the
expression for 1/sin3(yo) becomes

1 2 +(1h)-C01 C02"+ h)2

s(y) - Co, + 2(1 + h) - CoC 02( +h) 2 2

I Substituting this relation into the ODE, Eq (D.22) gives

__ q 20 + h) -CIC0(1 +h)2  3

dh (1 + h) C_ Co,+ 2(1 + h) - Co0 C02(1 + h)2)

But from Eq (D.24), q, is known. Therefore, after substitution, the

I above ODE becomes

dI 1  1 2(1+h)-CoCo(+h) 2  3 C\ + )c2 +h

I I 3-Co,.20+) -COC02" +h)2 ( 3
hh( 2 - C 0 c ( +h ))

2

I
After simplifying, the ODE finally becomesIC

da1  _- + C12(1 + h)_dh" 3

(-COl+ 2(1+h) - C0oC 02(1+h)2)2I
The Method of Separation of Variables is used to solve this ODE.

I From Eq (D.A), the solution has the form

I
I
1
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I

daU-a r0 d ~~C~is- dh3
I\ (-C. c 1 .,+2(1+h)-1C ,02(1+h)2)2

+ (12 a1 + h) dh3

j (-Col + 201+ h) - CoICo2( + h)2)2

The first integral has the following form and solution (Beyer,

1984:255),.where x - I + h, dx - dh, a - -Col, b - 2 and c - -CoiCo2.

I dx 2(2cx + b)
3 -(4a - 2) + x +cx2or

3 ~~~(a.+ bx +cx2)2 (a-b)ITIx

m rdh

I~~ ~ C I ('0 )- C°'° I C + 2 h)Co( ~

- C 0 C(1h)012C 02 ) q-C01 + 2(1 + h) - C01C02(1+ h)2

The second integral has the following form and solution (Beyer,

1984:256),.where x - I + h. dx - dh, a - -Col, b - 2 and c - -CoICo2.

x J dx 2(bi 2a)

(a + bx+ cxa) 
¢ or

I
I
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Ir (I + h) dh

(-C0,+2(1+ C)- C01Co2(1 + h)2)2

3I (1 + h) - COl

I -ct 12 - -) -C , + 2( + h) - C0oC 02(l- h)2

Substituting the above two integrations into the previous expression

Ufor a, gives

I - CoCO 2  (0 + h) +._ ["- o (Il- co, 02) <o,. +(, 20+) -Co, o2(i +,)
1

c, 2((t + )-Co )
(I ______2_ ____2_Is

(,-, 02) )/-CO, 2 0 + ) - +Co.Co2(, + h

I
Simplifying the above equation gives

l (C12 + C,, 02jCo)(1 +h) - ( + CoIC 2

3 Solution: a,' - (I -C01 2 )1_c0 , FC-(1+ ),1Ct + +C,5(D.29)1 "'°"°°: °'" (,- WCo,%to .,(1.,)-CoCo,(1.,)'" ,(.,

1
1
1
1
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Appendix E:

Derivation of Solutions for Inner Expansions of the Equations

of Motion

I Methods of Solution

K The solutions to the two sets of five, coupled, first order, linear

nonhomogeneous ordinary differential equations (ODEs) found in this

appendix are derived below. Five methods are used to solve these

3 equations. The first method used is the Method of Separation of Variables,

where the ODE and its solution are given as (Beyer, 1984:315)

I1 f(x) J'f(y )
dx f (y) f (y ) dy+If(x)di-K

K is the constant of integration.

The second method used to solve ODEs found in this appendix is the

3 Method of Integrating Factors, where the ODE has the form

dy P(x)y - Q(x) (E.2)dx +

3 The integrating factor has the form

I JP() dz (E.3)

and the solution is given as (Beyer, 1984:315)

ye JP) di fQ(x) e JP) dz + K or
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fQ(x) e JP( dx + K (E.4)

e fP(x) dx

3 The third method is a variation of the second method and is known as

Bernoulli's Equation (Beyer, 1984:315). The ODE is given as

I + P(x)y _ Q(x)y n  (E.5)
dx

Again,the integrating factor has the form

- e fP(x) dx (E.6)I
and the solution is given, for n , 1, as (Beyer, 1984:315)

y (1-n)e (1-n)JP(x)dx (1-n)fQ(x) e (-n)J'P(x)dx+ K or

- n)fQx)e (1-n)JPW)d+ K 
e (1-n)jP(x)) (E.7)I x

The fourth method occurs when the ODE does not have an

3elementary function as its solution. To derive a solution to the ODE,

judicious approximations are made, using binomial and Taylor expansions

I and assumptions based on the physics or atmospheric entry and on

experience.

The fifth and final method to solve the following ODEs recognizes

3 that some of the ODEs are coupled and cannot be solved independently.

Thus, an intermediate solution is found to two (or more) ODEs and by using

I this intermediate solution, the original ODEs are solved (Karasopoulos,
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1988:177). For example, suppose there are two ODEs coupled and cannot

be solved independently, dy/dx - f(x,y,z) and dz/dx - f(x,y,z). If the two

I ODEs are combined by a mathematical operation, like addition or division,

the independent variable, x, may possibly disappear, resulting in an ODE,

dz/dy = f(y,z), which is solvable. Assuming there is a solution to the above

3 ODE in the form z - F I (y,z) or y - F2(y,z), the two original ODEs are

expressed as functions of only two variables and thus are solvable.

3 Constants of Integration Notation

I As shown in Section IV, there are ten ODEs expanded from the

i equations of motion. Accompanying the solution of each of these ODEs is a

constant of integration. To simplify the bookkeeping involved in defining

all these constants, the following notation is used for the outer expansion

solutions:

I The constant of integration is given as KIP, where i denotes the order

-i -- C0 or c1) of the solution and j denotes the variable associated with this

constant.
i variableI

1 u2 a

I 5 a

Thus K0 1 is the constant of integration for the variable u0 and K14 is

the constant integration for the variable 01. In addition, the coupling

present in the first order inner ODEs generates lengthy constant terms in

3 their solutions. The following shorthand notation is used to describe these
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terms. Kiik are the constants multiplying the terms in the integral solution.

As before, 'K' signifies an inner expansion solution, '1' signifies a first order

solution, j' signifies the variable being solved and 'k signifies the kth

constant being defined in this solution. K141 is the first multiplicative

constant for the solution of variable il. This shorthand will only be used

for the first order inner solutions.

Inner Ex ansion c' TermsI
The differential equations corresponding to the c0 equation of motion

terms were derived in Section IV and are repeated below:

du- -2Bue-4( + Ntan(y°))
I sin(yo) (E.8)

d 0 - - (Be (E.9)

I d1o  B6e- cos(o)
d " sin(yo) cos(y o)

dB e-  sin(qE )
d sin(l 0 ) sin(yo) cos(y o) (E.11)

doB se- i (E. 12)
I d - tan(l0 ) sin(yo) cos(yo)

dgn/dt Eauation Solution. The Method of Separation of Variables

solves Eq (E.9). Rearranging Eq (E.9) into form of Eq (E.1) gives

I - .- ) dq"- - XB e-- od -. dO -- o+
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Solving the above ODE gives

Solution: q0 - N Be- , K02  (E.13)

"u/dt Eouation Solution. This ODE is solved by first rewriting the

terms sin(y o) and cos(y o ) in Eq (E.8) in terms of q0, where q0 - cos(yo).

Thus, cos(yo) - q0 and sin(yo) - ql-cos2 (yo) - I -q0
2 . Substituting these

into the ODE gives

~--Bue~(siny 0 ) + cos(-yo)) -- ue (iq 2 +I 1-q0o2

As derived in Eq (E.13), q0 - q0( ). To simplify the above integration,

the independent variable is changed from to q0. Since q0 - N Be -  + K02,

dqo- -? Be -  d . Thus, the ODE now becomes

duo 2u0  1 N

dq0  N 1 q0I
Now, the Method of Separation of Variables is used to solve the above

equation. Rearranging the above equation into form of Eq (E.1) gives

ad 2u0  1 duo
dq0 _N2 + qJ, U0  - Iyj. + dq0

H duo- f + dq0  K

Solving the above integral (Beyer, 1984:252) and remembering, by

definition, (Eq (D.27)) q0 - cos(yo) or yo - Cos-'(qo)

I
I 126

I



I

I 'n(uO)- -Cos'(qO)+ 2n(q)+K01

Rearranging the above equation gives the final solution, where

exp(io, - K01

Solution: u- K01 q02 ex[-Cos-'(qo)]

I K01 qo2 ex - YO

K01 Oe + K 02)12 exl[- Cos-' (NBe_ + K0 )I -o,( : . ~ 0o,2o -)]'( : (E. 14,)

dI0/dt Eouation Solution. The last three ODEs are coupled and are

solved as such. First, the Io and % ODEs are combined to express 1o as a

I function of a. Using the chain rule for differentiation

d1o d1o dI d " d dO%I
Substituting for the two known ODEs (Eqs (E.10) and (E.12)) on the

* right hand side

d1o  Be - cos(a0 ) tan(I 0 ) sin(y 0 ) cos(y) tan(lI)
da" - sin(yo) cos(yo) B6e- sin(ao) tan(a0 )

I Separation of variables solves the above equation. Rearranging the
above equation into form of Eq (E. 1) gives 1o as a function of cx (Beyer,

1984:260).
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I

10 . .tan(!) dd

d% tan() Wtan( o )  tan(q0 )

I~~" ) ta ( '3 taIan(sin(K0

I3", In(sinlo)) + in(sin(%)) - In(sin(Ko3))

I -) sin(Io ) sin(a%) - sin(K0 3) or

Si- sin(K0Z) a, a- sin(K03 ) (E.15)

si,(K0) and F intsin( 1 0)

I Next, the N and a0 ODEs are combined. Using the chain rule for

3 differentiation

I d0 - d dN

Substituting for the two known ODEs (Eqs (E.1 1) and (E.12)) on the

right hand side
dU_ B6e- sin(%) sin(0 )sin(yo) cos(y0 ) . _ cos(10)

dQo tan(lo) sin(yo) cos(yo) Bbe- { sin )

I But from Eq (E.15), 10 is known. Using this and the trigonometric

identity cos(Sin 1'(x)) - 41V (Beyer, 1984:141), the above expression is

I transformed as follows.

d0o -- cos(o) -coiSin' (),i

I
I 128

I



I

._[(sin(Ko3 ) z '/2

[sinZ(ao) - sin2(K03)2

Separation of variables solves the above equation. Rearranging the

above equation into form of Eq (E. 1) gives

[ 2(a') _ sinZ2K 3 )fI2 sin(a 0) daO
do [iz )-si" 2(a /'.' dN- , o)d3 -- sin2(a) - - sin 2(%) - sin(K 03)

- sin(a 0 )da + K04

qsin2 cz0) - sin2(K013)

Using the substitutions x - cos(%), dx - - sin(a 0 ) d% and sin 2(% )

= 1 - cos2(%a) - I - x2, the above integral is easily solved (Beyer, 1984:252)

and gives N2o as a function of %.

N - - - sin(+) d K04
- J qsin2 (%) - sin2 (Ko3 )

di* + K04
;I11 - x2- sin0(Ko 3)I

( dx

I J os2(K03)- X2 + 04

-C- Co s(%,)) + K04 or

I
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I

cos(K04 - QV)- cos(K03) (E.16)
I

Finally, the dlo/d ODE is transformed to dlo/dy o via the chain rule

I for differentiation, use of Eq (E.9) and the definition q0 - cos(yo)

dq0  d(Cos(yo)) dy dY ABe4

XBC . iny ) _
- sid 0  d d ' sin(y0 )

Using this relation and Eq (E.10) gives

3 ~dlo _o _ g BWe- cos(c) sin(y0 ) Scos(%)

dy o  d dy o sin(y o ) cos(yo) ,Be- N, cos(Yo)

Substituting the relation for sin(%) in Eq (E.5) gives

5/r I- sin2(K°3) '1/ 2  2(0 _ iV3 dA 1 sinZ(Io )] .isin2(IO -sin(K03)J

dy o  cos(y o ) N sin(Io) cos(y o)

I Separation of variables solves the above equation. Rearranging the

3 above equation into form of Eq (E.1) gives

6 - sin(I0 ) d 0 o3 sec(y0 ) dyo s - orN sin2 (10 ) - sin2 (K0 3)

! J' sec(yo)dyo " f sin(10) + Kos

N f qsin2(lo) - sin2 (Ko3)

The first integral is easily solved (Beyer, 1984:260)

Jsec(yo) dy° n[tan(4 "')]
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I
Using the substitutions x - cos(Io), dx - - sin(1o ) dIo and sin 2( o

- 1 - cos2(Io) - 1 - x2, the second integral is easily solved (Beyer, 1984:252)

SI and gives

S, - sin(o) dI

I "- { 12(K- 5 -

-. - K05J COS2(K03)- x2

Cos- cos( I )

os( K3)) K o

I ~cos(10) - cos( K03) COS(N inta(E4 2 K
I
3 Solution: 10 - Cos-Icos(Ko3) co In(tan + , Kos

I - Cos - t' cos(K03)co In tan !! I - I + K0 s (E. 17)

I da,,/dt Equation Solution. This solution is derived above and is

repeated for continuity. From Eqs (E.15) and (E.17) % is expressed in

terms of the independent variable,. .
i (sin(Ko3)

Solution: in- sin() J
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Sin - cos2( os° sin(K 3) 2(E. 18)

1 - CAK Intan T Cos-( Be-& + K 02,) J+K05111

I df2/dt Eauation Solution. This solution is derived above and is

repeated for continuity. From Eqs (E.16) and (E.17) 00 is expressed in

terms of the independent variable,. .

_ -l: os(%z)Solution: oK 04- Cos(' cos(Ko0 ) (E. 19)

I

- Cos " 1 { cos2( c Intan (K 3  (NBe +Ko2
i - cos( n (ta ( 2

cos(K03)

I
Inner Exoansion e_ Terms

3 The differential equations corresponding to the e1 equation of motion

terms were derived in Section IV and are repeated below:

! du, u,( an(yo))
d-- e[ sin(yo)

uo cos(yo)(1 + tan(yo)) N uO y, (E.20)

sin(Yo) cos2(yo) sin(y o)J

dq O I -+ (E.21)

I
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I d11, . BWe YcOs(%) ( )- 2 )- asn ( E.22)2 2(YO)sin(y0 ) cos(y0 )

Q.A - ye - sin ( aO ) ( 1 _ _ _ _I

I I~ sin(a0 ) cos(I0) -a Icos( 0)- 1E23
sin2(10) sin(-y0) cos(y0 ) + sin(I0) sin(y0 ) cos(yo)J E3

c - tan(yo) [ [Yisn(aO) -i2y

2cx _____ si n() ( acos( ) (E.24)Y

sin (10) sin(-y0 ) cos(-y0 ) WOnO1) sin(y0) cos(y0) IE24

"I /dt Fgation Solution, The Method of Separation of Variables

I solves Eq (E.2 1). Substituting relations ror uO (Eq (E. 13)) and qO (Eq (E. 14))

into Eq (E.2 1) and simplifying gives

d q 
q 2

(- +( +K02) ( 4 co i ( B + K02 -)

1 + 2133+
IO Ne 0) Ne 0



I2

Iq (G~e-4+ K2)''1 CSI BC K02)] +K1q,. ( 0)ko Ko, -1)

I q, - N B e - 4 - Ko02

I + ~!~' f( NBe + K 2 4Cos'( NBe-4+K 02)] d +K2I
Using the substitutions x - N Be- 4 + K02, x - cos() and the

trigonometric relationship cos(d) - cos(") 2 + 2)

3 I(Karameheti, 1966:624), the above integral is reduced to

3 { B-' + K02 ) ex4p'Cos-' (NBe-4 + K02 )] d

2_ ex -cos'(x)] di

Fcos(O) sin( ) p2
3 -- J cos(d)- cos( ) d (cos(d) - K02)

__) + cot,) (2\I ~~fcos( ){ct--) cot ot exp p j d

The above integral can be reduced to a sum of simpler integrals, but

I one resulting integral has an integrand of cot(z) ebz, where z is the

integration variable, a function of 4, and b is a constant. Using integration

I by parts, the resulting integral has an integrand of ebz/sin2Z, whose integral

cannot be expressed as a finite sum of elementary integrals (Gradshteyn
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I
3 and Ryzhik, 1980:197). Thus, the approximation made to solve the above

integrals is given asU
f ( NBe K02 )exfCos-' ( Ne4+K02 )] d

U (NBe_ K02 )exP[ Cos(K02)]d

I Figure E l compares the relationship between the exact function (the

3 integrand on the left hand side above) and the approximate function. While

there is a significant disparity at small values of (low orbital altitudes), the

3 above difference is negligible when both functions are integrated from

(orbital altitude at the beginning of atmospheric entry) to - 0. Figure E2

shows the integrals of the exact and approximate functions are identical

I until -+, where the two functions deviate slightly. This trend is reflected

in Figure E.3, which compares the exact solution of ql, obtained from

3 numerical integration of ql, and the approximate function derived for ql.

Thus substituting the approximate function into the above solution for q,

i gives an approximate solution for q,.

5 Solution: qI - K 121 (K - B-) + K ,2  (E.25)

3exp 2 Cos-'(K02)
where K12 1 - K - 1 (E.26)

duj/dt Eouation Solution. Rearranging Eq (E.20) gives the ODE a

form solved by using an integration factor.

I
i 135

I
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0I 0.20 - Approximate Function (Fa)
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0.00 0.20 0.40 0.60 0.80 1,00I

Figure El. Comparison of Approximate and Exact Functions

in Deriving the q, Solution

du (2B(lI + Ntan(o))e- ,) U 2Buoy,cos(y 0)(l + Nan(yo))e-
sy )iu " -Uo" sin(YO)

I 2BX uo y 1e-

_ cos2(yo) sin(y o)

The ODE now has the form where an integrating factor is used to

solve the ODE.

3 2B(I +tan(yo))e -

sin(y o)
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0.00 00 0.40 o 0.60 0.80 1.00

Figure E2. Comparison of the Integrations of the Approximate

and Exact Functions in Deriving the q, Solution

2Buoylcos(yo)( ! + xtan(yo))e - 4 2B\ u0 yie-

Q()"-u°* sin(YO) - cos2(yo) sin(Yo)

From Eq (E.3)

D = e rp() d- f 2B( 1 + tan(y))e d

- sin(Yo)

Factoring the trigonometric terms and noting cos(yo) - qo and sin(yo)

= I- qoJ , the above integral in separated into the sum of two

I
I
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11.0

U0.8
0.6

0.4

0

3 0.2 Exact Solution

0 Appoximate Solution

0.0 0.2 0.4 0.6 0.8 1.0I €

3 Figure E3. Comparison of the Approximate and Exact Integral
Solutions for q1U

integrals. Substituting in the derived expression qo - N\ Be -  + K02

(Eq (E.13)), gives

u- exp {&- (e- - 2Bd B?g ~K 0 )2 ?NBe- + 0

3Using the substitution x - N Be-t + K02, the above integral is easily solved.

3 ouoex [ cos,( B-,. K02)- 2 ln(XBe-+Ko2)1

I
I
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U2
i exp (Cos(Be +K))

1C ( e+ K02 )2

I -~ exp Y

I q0
2

3 Thus, after factoring the trigonometric terms and using the definition

for qo as above, and substituting the expression for q, (Eq (E.25)), where by

I definition (Eq (D.27)) y1 - -ql/sin(yo), Q( )u = Q( ) e JP(Q) d gives

2Buo-ycos(yo)( I+Ntan(yo))e- 2NBNuO,e-]3Q(0) - q02  -uO+ sin 2(Y" - cos2(Y°) sin(y°)

I - K 2BXK 0 1e- [-K U INBC + K02 K121  + K12J

2BKOe- (BC+ K02 )

3-Koj (\Be-3 + K 2) I-K 21?Be + K02 K121  + K12]

3 - (NBe + KO,)2F2

3 Distributing the terms in the above equation and integrating gives

(where A1 - A6 are constants)

fQ( )U d - KI1 - K01t + (Al e 1 2 2I
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I

+ A2  N2 B2e-2y + ABe- 2 dC
( (?Be + K02)2 NC +K0

NBC (NB +K 0 2 ) d

I +A 4 f' 3

I I - (Be-4 + K 02 )

A~-(B + K 2)
1 - (GC + K02)

I + [6  (Be- +d)

3 The first and second integrals above are easily solved by using the

substitution x - NBe - + K02. The third integral is solved by using the

I following relation (integration by parts and (Beyer, 1984:278)).

|f _B; d
(NBe-4 + K02 )Z "B- + K02 - f\Be- + K02

1
02) KLIn ( NBe + K02 )

IBe- + K02 - 02

I The fourth and fifth integrals are easily solved using the substitution

x - ABe - + K02 and the following relation (Beyer, 1984:253,254).

I
I

140

I



I

,NB. (NB K02) ,,,2 dx xdx

I JL- ( -NB + Ko)12  J,[1 -x I [1 XT
I

NBe -

* = 1 - (~Be- + K02 )2 - Sin- (?Be - + K° 2)

I The sixth integral is solved by using the substitution

3 x - N Be-  and the following relation (integration by parts and (Beyer,

1984:257)).

| [NB (NBe -+ K02 ) 1 - ,.

f d " dx

IJ /,- (N,.-<.,o2)2 -] .

I 77B: "K 2 2{ "'
1- - (+Kfx e()+K 0  )

I___ 1qIK2)(-K022) - 2KO2x xz)2KO2X + 2-KO2)1
I -K22

Thus, Eq (E.4) gives the solution as ul e f( df or

I
I
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3 Solution: ul - (1iBe- + K 22exp( Z CosI(Be- +
0 2) X 0))

X KII+ 2K01(K -+ K02 K121) 2K121 Ko1 Sin-K(B-0 +K3 Be- + K02  N Sn'02J

JiK01K 2- K0 ,1  1,211(K0 2  - Be- ) ____K_1_K121

+ K 2

I1 rX + K0 ) N I -K 02

X I 2[2 I-K0 2 
2) [1 -(N3ee + K02e1 2K(02 (0Ne- K02) + 2JJ.2L Be_ (E27

dkl/dt Eauation Solution. The last three ODEs are coupled and are

3 solved as such. First, the a, ODE is solved using judicious assumptions.

This solution is used to derive an expression for 11. Finally the solutions for

a, and I1 are used to derive an expression for Q1. The expression for dal/d

3 is given as Eq (E.24).

da cot(yo)- Bbe- [ylsin(a)I d MOO)y0  ta ( cos2(y0) sinMAYO))

I I sin(a0 ) alcos(%) 1
sin°) sin(y°) cs(y°) + tan(10) sin(y ) cos(y°)

3 Since re-entry vehicles enter a planetary atmosphere with small bank

angles (a), the value for 6, where by definition (Eq (3.33)) 6 - (CL/CD)

3 sin(o), is very small, or 6- 0(0.001). Combining this with the fact e"( is also

small, or e"k - 0(0.1), results in a simplifying assumption for the da1/d

I ODE. Assuming cot(y o );o Bbe "k, which is valid for yo < 80" and typical
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3 values for B (B - 0(10)) (Hilije, 1969:2), the coupling in the da 1 /d ODE is

removed. Thus, the da 1 /d ODE becomesI dc cos(y 0o)

d cot(yo) " sin(y o )

This ODE is solved by first rewriting the terms sin(y o) and cos(yo) in

Eq (E.8) in terms of , where, q - cos(y o) - N Be + K02. Thus, sin(y o ) -

1[I-cos 2(y ) - l-(,Be " + K02)?. Substituting these into the above ODE

gives

d. NBe "  + K0 2
|B K02)2

3 Now, the Method of Separation of Variables is used to solve the above

equation. Rearranging the above equation into form of Eq (E. 1) gives

a, T K1 \ Be_ + K02  da1 " K s + j VI-(NBe- + K02)?

3 Using the substitution x - N Be -g, the above integral is reduced to

dx __ _ _ _ _ __ _ _ _ _3 a"K - (I - K0 2' ) - 2Ko2x(I K 2  - K02') - 2Ko x - X2

I The first integral is easily solved (Beyer, 1984:255) and gives

Il(1 - Ko)- 2K02x - -" Sin' (x + K02)

With some manipulation, the second integral is easily solved (Beyer,

3 1984:257) and gives
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*dx

f 4(1 - K02
2)- 2K0 2X- X2

_____[2( 0K224"(1 02 ) K02X - 2 2 02X +(0-K022)
I =I 1-Ko 22 xJ

I Substituting the above two integrals back into the original expression
for a, gives

3Solution: a, K15 - Sin1'(NBe + K02) + -22

X In [2 0 1KO2 21(?a- Be+Ko2)2] - 2KO2(?Be- +Ko2) + 2i

5 Figure E4 compares the exact solution of a,, obtained from numerical

integration of a1, and the approximate function derived for a,. While there

is a minor disparity at small values of (low orbital altitudes), the above

difference is negligible when the magnitude of the disparity is compared to
I the magnitude of the functions at this altitude. This difference between the
3 exact and approximate solutions reflect the same behavior as found in the

approximate solution for q, (Figure E.2)

(.2.411/dt Equation Solution. The expression for dI/d is given as Eq

dl sin()3d1 1 . Bbe~ [-Ycosao) ( -os2'(y0) - iZy) sin(o) sy)
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-- I
1.0

0.8

* !06

0

I 4

z0,2- Exact Solution

* Approximate Solution

* 0.0 •
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure E4. Comparison of the Approximate and Exact Integral
Solutions for a,

I
The above ODE is transformed to dI,/dyo via the chain rule for

I differentiation, use of Eq (E.9) and q0 - cos(y0 )

\IB _ dqQ d (-osiy)) . ) dy 0 -Y 0  XB&

d- sin(y o)I
Using this relation and Eq (E.22) gives

I 11, dl g
dy o " d dy

sin( e- [c( A) alsin(ax)
_Be- sin(yo) cos(yo)_
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I
sin(y0) 1 alsin(o;0)

I [Ylcos(%) cos2(yO)- sin(yo) - cos(yo)

From Eqs (E.18), (E.25) and (E.28), relations for co, q, and a, are

given, and by definition (Eq (D.28)), y1 - -ql/sin(yo ). Substituting these

I relations into the above ODE gives

dI 6 - 'cos() (siY) a lsin( o
dyo N [Y iQO 2 (y-os(o cos(y 0)JII

- [K ,21 (K02 - K02 n( ('sjo) -cos(YO)),K 2l

I an + - -- ))+Kos]
cos(K 03) co{N( 4

cosi(y) 71OS~o) - [cos(K 3) co~ lnIntan, + -Y )+o

xK Tr K0 I 2..i-K... sin(y0) - 2Kp2cos(y0) +211

YOIS 2 - 4i2 2 cos(yo) -KO2  ii

Before separation of variables is used to solve the above equation,

several approximations are used to bring the integration task down to a

I manageable level. First, using order of magnitude analysis involving 6/A\,
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I
and Kos, / , - 0(0.001) and Ko5 W 6/. Therefore, the following

approximation is made.

sin In tan + 2

Therefore

cos ln tan ) + Ko cos(K05)

Also, through numerical analysis, the following approximations are made.

ln(cos(yo) - K02 ) - - cos(y0)

K0°2 In (2 1 - K022 sin(yo) -2 K02 cos(y0) +) - 0
1 - K0o22

Substituting these relations into the above ODE and combining

integrands gives

d11 6
dyo N K 121 ( K,2 ( +,nB)) -(I + K,2)o o(Yo,)+ K 12]

I 1 - 1sin(Kos) cos(K0a)
X sin2(yr,) -cos 2(yr,)) i I- sin 2(Kr, 5) cos2(Kr,)

sin(Ko3 )

cos(Yo) " I - sin 2 (Kos) cos2 (Ko3)

Sx c]_ o o(yo).+ K,15.+,o-T

I 147I



Rearranging the above equation into form or Eq (E. 1) gives

11 1- K13 +K 02 sin(K 03) dyON -K2 jI - sin 2(-K05) cos2(K03

sin(K05) K12 1 (K02 + I ) cos(K03) sn(YOy0)
Il-SIfl (K05) cos(K 3 )) fi 2 y y

sin(K05) [K I2.K0 2 K 121 (I +n(NB))J cos(K03) dy

11 -sin
2(K05) COA2 K03) sin2(Y0D)

sin(KD5) [K I2.K02 K,121 ( I lnG\B))J cos(K03) y

I I sin2(K05) cos2(K03) fcos2(y0)

r

+ [sin(K05) K, 21 cos(K03) (K02 .+ 1) + sin(K03) K,5)1  y
L 1I - sin2(K05) cos2(K03) f .1cos(y0 )

sin(K03) YO dy0

41- sin (KO,) cos2(K03)Jcoy)

The first five integrals are easily solved (Beyer, 1984:260,26 1). The

sixth integral is given by (Gradshteyn and Ryzhik, 1980:189)

00

COSW k-0 2n+0M
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The term IE2kI is the Euler constant: its first few terms are given as

(Gradshteyn and Ryzhik, 1980:xxix) Ej - 1, 1E21 - I and E, - 5. Thus the

above integral becomes

f cos(y o) 2 + 8 + 144 *O(y 2 +8

ISubstituting yo - Co s- ' (NBe -  + K02 ) gives the solution for I as

I
131 (K13 _ cyiK133Y2 4

11 I- K13 +4N Ki32 (y + K134[ K 2  2 8

I+ [K 13,K 132 +K 134 ( - K 15 ] ln~tan(14 -O)] .

K131 N32 K133Ne s+K 2

Solution: If - K 1  31  )

I ' %. 1 -(No,3( -+ o0))

+ [,3K 3 K,134  - K,15)] 14tan( 4 Cos- (?be + K02Il

K,[o2CoS1(Be+,K02) [Cos'(NBe +K02)]2

+ 34 I, - K02 2
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I

I [Cos'( NBe + K,) ] (E.29)

sin(K05 ) cos(K03)3 where K,31 - VI - sin 2(Kos) cos2 (K0 3)

K132 " K121 (I + K02)

K133 " K12 + K02 K121 (HMO))

sin(K03 ) (E.30)
K134 - 'I - sin2 (KOS) cos2(Ko3)

U Figure E5 compares the relationship between the exact solution of I,,

derived by numerical integration, and the approximate, analytical solution

derived above. As in Figure E3, the correlation between exact and

approximate solutions is good, with a small difference appearing as -+O.

This is the same phenomena found in the approximation for q,. Thus, even

i with the three approximations used to derive this solution, a significant

I portion of the disparity between the exact and approximate solutions are

attributable to the approximate expression used for q1 .I
( f21/dt Equation Solution. The expression for d,/d is given as Eq

Q BW ,sin(%)

d'- sin(io) cos(Yo ) -sin 2yo))

I
I sin(%0 ) cos(10 ) alcos(z)

sinz(10 ) sin(yo) cos(yo) ' sin(lo) sin(yo) cos(yo)J
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-08 Exact Solution

* Approximate Solution
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Figure E5. Comparison of the Approximate and Exact Integral

Solutions for I

The above ODE is transformed to d~l/dy0 via the chain rule for

differentiation, use of Eq (E.9) and q0 - cos(yo)

I. d(cos(y,)), . dy dYo oBe

- - d d -d - sin(y0)d osny)

Using this relation and Eq (E.23) gives

d .dQ~q dt
dy o  d dyo
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6[,sin(yo) sin(aop) 11

I + ~~sin(1 0) cos(y0 ) (aioa)-I sin( 0 :10)

From Eqs (E. 18), (E.25), (E.28) and (E.29), relations for ao, q , al and

3, are given, and by definition (Eq (D.28)), y1  -ql/sin(y0 ). Substituting

these relations into the above ODE gives

dyo d dyo

I .~.~Y sin:;(a) (coshyo) - inf2(y 0))

1 aII~o)-1 sin(2g) cos(10) \
U ~sin(10) cos(TO) (coc - sin(10)

I r (sin(K03) sin(K03)
8 K133-K02K 121ln (cos(yo)-K0 2) -K12 C5Y) ( 0  cs(Y0

L~I 1tano~ 3  + YAo))+K 05

KIT K I 2V4j7K2 sin(y0) - 2K 02COS(Yp) + 2]
is + Yo 2 A cos(y0) -K0
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I

[co(K3)sin 2 (K03)2I x 1 -+ -

cos{ In tan ))K.

U [8((rrCOS (NBe + K 2 yI sin(K03) cos(K03 ) coS. In tan + 2 +Kos

3 cos(yo) I - [cos(Ko3 ) coj[ In tan + +Ko 2

~KI~+ ~ K 3 Y0Y)2 22 81

( 1 3 1 ( 3 CSY) K02y YO .
13 N sin(-o) + K 13 -K 022

i Before separation of variables is used to solve the above equation,

i several approximations are used to bring the integration task down to a

manageable level. First, using numerical analysis involving 6/A and K05 ,

3 6/X - 0(0.001) and K05  6/h. Therefore, the following approximation is

made.

Sin lntan14E + Kos] sin(K05)

Therefore

Co in(tan( + 2) 05 ]
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I
I Also, through numerical analysis, the following approximations are made.

ln(cos(-yo) - K02) - - cos(Y)

K02.&L..2..ln(2 FI-K 02 
2 sin(y0 ) -2 K02 COS(y) + 2)i0

II 1- K02

I Substituting these relations into the above ODE ,combining

integrands and rearranging the result into the form of Eq (E.) gives (where

A1 - A11 are constants)

I

n, 6JAifd-yo + ( dyo + Acos(y0) dyo
~ K14+ tN sin2( YO) A2J cos2(y) )3Jf sin(y0 )

Iy + Ay0  dyo (+A dyo
+A4 f cos(Y0) f ~ cos(y 0 ) sin(y0 ) 6 Aj sin(y0 ) cos2(y0 )

+A yodo+A+ gos(Y0 ) fcos(yO f cos(yO) + 10J dyo

I tan T+2ft)dyo+All (4 2OY) ]

I Beyrcos(y)

The first six integrals are easily solved (Beyer, 1984:260,261,263).

The seventh through the ninth integrals are given by (Gradshteyn and

Ryzhik, 1980:189)

I 00

Icos(x) 'k- (2k+n l) (2k!)
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i The term 1E211 is the Euler constant: its first few terms are given as

U(Gradshteyn and Ryzhik, 1980:xxix) 1E01- 1. IE21 -1 and 1E,1 - 5. Thus the

above integrals becomes

YOn d 0  y on+ y +  +___n_
cos(yo) " n + I 2(n +3) + 24(n +5) +5 (yn)

3 The eleventh integral is transformed to put the equation in a suitable

form. By using trigonometric identities (Beyer, 1984:138)

I 2a 1-+ - sin(yo)I yQ cos(yO)

Using the law of logarithms

14t]na141Y cos(yo) I + sin(yo)]
Itan sin(yo)J] l1 -sin(yo)J

Using the series expansion for the right hand side term yields (Beyer,

1984:297)

Sii [ + sin( Yo)]. -0 sin 2n-I(Yo) - si sin (Yo) + (sinS(yo))
2 1 -sin(yo)JI -1,I 3

Therefore Is

I ~ ~~I an y0 - d'yo ' csy) y

N -41n(cos(yo)) cos2(y0)
IO 3 6
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I
I Solving the above integrals and substituting yo - Cos - ' ( NBe -  + Ko2 )

gives the solution for II as

3 K4, K 2 - cos(yo) K,42 K2ss -t( 2)
SK 1 4 + sin(yo) cos(Yo) + K143 i 2

3 + (K13 2 K 42 + K144 (- K15)) [4 ln(cos(y )) cos2y(I

Ko2 K144 YO+ I4 305 , 1461+ - + K PO + _y K 146]}
+ 1-K 0 2

2  145 [X 40 1 2 +

f K 41 (K132 -Be-+K 2) K1

, Solution: 0, K, 14  L / -(e-+ K02  + B - K1

I
i3 + K,43 ,n~tan( -+ Cos-( Be-+ K+K))]

(K 32 K4 + K44 - K ) NBe + K0 2  (

+ K K, 44 Cos - ' ( Bee + K 02 )

314 -K 2

/I - K02 2
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+K [+K0 )]3  3[Cos-( Be-4 + K02 -

145 6 40

+ Cos - (B_ -
______ [Cos- ' (Be - + K02 )]411

1+ K 46  2  + 8 (E.3I)

I KZ34.
where K 4, sin(K03)

I K 8 sin(Ko5) cos(K05 ) sin(K03) cos2 (K03)
K142  (I - sin2(KOS)cos2(K 03))Z

K"43 " K142 (K133 - K132 )

K, 34cos(K 3)(sin(Ko5 ) - KI3 I - 02)1 I - sin 2(K05 ) cos 2(K03 )

I sin(K05) cos(Ko3)(KIS - 2)
+ 1 - sin2(K05) cos(Ko3)

sin(Ko5 ) cos(Ko0 )3 K144 - I - sin 2(Ko) cos2 (K03 )

K142 tan(K03)
K 45 - sin(Kos)

I K,46 - K144 - K (E.32)

I
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I

w Figure E6. Comparison of the Approximate and Exact Integral
Solutions for £2l

I
Figure E6 compares the relationship between the exact solution of ,I derived by numerical integration, and the approximate, analytical solution

3 derived above. As in Figure E3, the correlation between exact and

approximate solutions is good, with a small difference appearing as -.

I This is the same phenomena found in the approximation for q.Thus, even

with the three approximations used to derive this solution, a significant
I portion of the disparity between the exact and approximate solutions are

attributable to the approximate expression used for qj.

I
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I

Appendix F:

Sample Earth Atmospheric Entry TraJectories

This appendix presents an example Earth atmospheric trajectory to

demonstrate the use of the zero and first order composite expansions

derived in Section IV, Eqs (4.107)-(4.111). The initial conditions are for an

Apollo-type reentry vehicle and are derived from theoretical and flight test

I data (Hilije, 1969:2-10)

I For the following sample trajectory presented in Figures F I -F5, the

independent and dependent variables are defined in Sections II and III and

3 are repeated below.

y - Vehicle Altitude (i)

u - Non-dimensional Speed Ratio, u -V 2 cos2(y)/gsrs

y - Flight Path Angle (deg)

I I - Inclination Angle (deg)

I - Longitude of the Ascending Node (deg)

a - Latitude at Epoch (deg)
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I1.

1.0- Numerical Solution

* Zero Order Analytical Solution
* First Order Analytical Solution

I
0.8

06

M 0.4

0.2

0,0 .... ' .' .. ... . .. . . . . . . .f. .
0 10 20 30 40 50 60 70 80 90

ALTITUDE (kin)

Figure FI. Comparison of the Numerical and Analytical
Solutions for the Speed Ratio, u
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-60" Zero Order Analytical Solution
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Figure F2. Comparison of the Numerical and Analytical3 Solutions for the Modified Flight Path Angle, q
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3 
Numerical Solution

Zero Order Analytical Solution
First Order Analytical Solution
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*
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Figure F3. Comparison of the Numerical and Analytical
I Solutions for the Inclination Angle, I
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Numerical 

Solution

Zero Order Analytical Solution
)00- i  First Order Analytical Solution
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Figure F4. Comparison of the Numerical and Analytical3 Solutions for the Longitude of the Ascending Node, 0
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Figure FS. Comparison of the Numerical and AnalyticalZSolutions for the Latitude of Epoch, a
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orbital elements to the vehicle's altitude. Solutions to the resulting five non-
linear, coupled, first order, ordinary differential equations are obtained by I
using the Method of Matched Asymptotic Expansions and a computerized
symbolic manipulator, which performs the detailed algebraic computations.
By using the planetary scale height-mean equatorial radius (PSHMER)
product as a small parameter, both zero and first order expansions to the
equations of motion are obtained. )6L. - 2.- rL , I

It is demonstrated the analytical solution agrees with results obtained
from numerical integration of the equations of motion. Due to
approximations made in the solutions of the first order inner expansions, the
analytical solution slightly deviates from the numerical solution at low
vehicle altitudes. The two solutions are compared further and the validity
of the analytical solution is examined.
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